Google’s MapReduce Programming Model — Revisited”

Ralf Lammel
Data Programmability Team
Microsoft Corp.
Redmond, WA, USA

Abstract

Google’s MapReduce programming model serves for processing large data sets
in a massively parallel manner. We deliver the first rigorous description of the
model including its advancement as Google’s domain-specific language Sawzall.
To this end, we reverse-engineer the seminal papers on MapReduce and Sawzall,
and we capture our findings as an executable specification. We also identify and
resolve some obscurities in the informal presentation given in the seminal papers.
We use typed functional programming (specifically Haskell) as a tool for design
recovery and executable specification. Our development comprises three com-
ponents: (i) the basic program skeleton that underlies MapReduce computations;
(ii) the opportunities for parallelism in executing MapReduce computations; (iii)
the fundamental characteristics of Sawzall’s aggregators as an advancement of the
MapReduce approach. Our development does not formalize the more implemen-
tational aspects of an actual, distributed execution of MapReduce computations.

Keywords: Data processing; Parallel programming; Distributed programming;
Software design; Executable specification; Typed functional programming; MapRe-
duce; Sawzall; Map; Reduce; List homomorphism; Haskell.

*This paper has been published in SCP. This version fixes some typos.

Contents

1 Introduction 3
2 Basics of map & reduce 4
2.1 The MapReduce programming model 4
22 Lisp’smap&reduce 5
23 Haskell'smap&reduce 6
2.4 MapReduce’smap &reduceol 8
3 The MapReduce abstraction 9
3.1 Thepowerof V0 9
3.2 The undefinednessidiom 11
3.3 Typediscovery fromprose, 11
3.4 Type-driven reflectionondesigns 12
3.5 Discovery of typeso 15
3.6 Discovery of definitions 16
37 Timetodemo 20
4 Parallel MapReduce computations 21
4.1 Opportunities for parallelism 21
4.2 Adistribution strategy 22
4.3 Therefined specification 24
4.4 Implicit parallelization for reduction 26
4.5 Correctness of distribution L. 27
5 Sawzall’s aggregators 28
5.1 Sawzall’'smap&reduce 29
5.2 Listhomomorphisms 29
5.3 Tupleaggregators e 33
5.4 Collection aggregators u e i e 33
5.5 Indexed aggregators 35
5.6 Generalizedmonoids Lo oL 36
5.7 Multi-set aggregators e e e e 38
5.8 Correctness of distribution 0oL 39
5.9 Sawzallvs.MapReduce L. 39
6 Conclusion 40

1 Introduction

Google’s MapReduce programming model [10] serves for processing large data sets
in a massively parallel manner (subject to a ‘MapReduce implementation’).! The pro-
gramming model is based on the following, simple concepts: (i) iferation over the
input; (ii) computation of key/value pairs from each piece of input; (iii) grouping of
all intermediate values by key; (iv) iferation over the resulting groups; (v) reduction of
each group. For instance, consider a repository of documents from a web crawl as in-
put, and a word-based index for web search as output, where the intermediate key/value
pairs are of the form (word,URL).

The model is stunningly simple, and it effectively supports parallelism. The pro-
grammer may abstract from the issues of distributed and parallel programming because
it is the MapReduce implementation that takes care of load balancing, network perfor-
mance, fault tolerance, etc. The seminal MapReduce paper [10] described one possi-
ble implementation model based on large networked clusters of commodity machines
with local store. The programming model may appear as restrictive, but it provides a
good fit for many problems encountered in the practice of processing large data sets.
Also, expressiveness limitations may be alleviated by decomposition of problems into
multiple MapReduce computations, or by escaping to other (less restrictive, but more
demanding) programming models for subproblems.

In the present paper, we deliver the first rigorous description of the model includ-
ing its advancement as Google’s domain-specific language Sawzall [26]. To this end,
we reverse-engineer the seminal MapReduce and Sawzall papers, and we capture our
findings as an executable specification. We also identify and resolve some obscurities
in the informal presentation given in the seminal papers. Our development comprises
three components: (i) the basic program skeleton that underlies MapReduce compu-
tations; (ii) the opportunities for parallelism in executing MapReduce computations;
(iii) the fundamental characteristics of Sawzall’s aggregators as an advancement of the
MapReduce approach. Our development does not formalize the more implementational
aspects of an actual, distributed execution of MapReduce computations (i.e., aspects
such as fault tolerance, storage in a distributed file system, and task scheduling).

Our development uses typed functional programming, specifically Haskell, as a
tool for design recovery and executable specification. (We tend to restrict ourselves to
Haskell 98 [24], and point out deviations.) As a byproduct, we make another case for
the utility of typed functional programming as part of a semi-formal design methodol-
ogy. The use of Haskell is augmented by explanations targeted at readers without pro-
ficiency in Haskell and functional programming. Some cursory background in declar-
ative programming and typed programming languages is assumed, though.

The paper is organized as follows. Sec. 2 recalls the basics of the MapReduce pro-
gramming model and the corresponding functional programming combinators. Sec. 3
develops a baseline specification for MapReduce computations with a typed, higher-
order function capturing the key abstraction for such computations. Sec. 4 covers
parallelism and distribution. Sec. 5 studies Sawzall’s aggregators in relation to the
MapReduce programming model. Sec. 6 concludes the paper.

TAlso see: http://en.wikipedia.org/wiki/MapReduce

http://en.wikipedia.org/wiki/MapReduce

2 Basics of map & reduce

We will briefly recapitulate the MapReduce programming model. We quote: the MapRe-
duce “abstraction is inspired by the map and reduce primitives present in Lisp and

many other functional languages” [10]. Therefore, we will also recapitulate the rel-

evant list-processing combinators, map and reduce, known from functional program-

ming. We aim to get three levels right: (i) higher-order combinators for mapping

and reduction vs. (ii) the principled arguments of these combinators vs. (iii) the actual

applications of the former to the latter. (These levels are somewhat confused in the

seminal MapReduce paper.)

2.1 The MapReduce programming model

The MapReduce programming model is clearly summarized in the following quote [10]:

“The computation takes a set of input key/value pairs, and produces a set
of output key/value pairs. The user of the MapReduce library expresses
the computation as two functions: map and reduce.

Map, written by the user, takes an input pair and produces a set of inter-
mediate key/value pairs. The MapReduce library groups together all in-
termediate values associated with the same intermediate key I and passes
them to the reduce function.

The reduce function, also written by the user, accepts an intermediate key
I and a set of values for that key. It merges together these values to form
a possibly smaller set of values. Typically just zero or one output value is
produced per reduce invocation. The intermediate values are supplied to
the user’s reduce function via an iterator. This allows us to handle lists of
values that are too large to fit in memory.”

We also quote an example including pseudo-code [10]:

”Consider the problem of counting the number of occurrences of each
word in a large collection of documents. The user would write code similar
to the following pseudo-code:

map (String key, String value): reduce (String key, Iterator values):
// key: document name // key: a word
// value: document contents // values: a list of counts
for each word w in value: int result = 0;
EmitIntermediate(w, "1"); for each v in values:

result += Parselnt (v);
Emit (AsString(result));

The map function emits each word plus an associated count of occurrences
(just ‘I’ in this simple example). The reduce function sums together all
counts emitted for a particular word.”

2.2 Lisp’s map & reduce

Functional programming stands out when designs can benefit from the employment
of recursion schemes for list processing, and more generally data processing. Recur-
sion schemes like map and reduce enable powerful forms of decomposition and reuse.
Quite to the point, the schemes directly suggest parallel execution, say expression eval-
uation — if the problem-specific ingredients are free of side effects and meet certain
algebraic properties. Given the quoted reference to Lisp, let us recall the map and re-
duce combinators of Lisp. The following two quotes stem from “Common Lisp, the
Language” [30]:

map result-type function sequence &rest more-sequences

“The function must take as many arguments as there are sequences provided;
at least one sequence must be provided. The result of map is a sequence such that
element j is the result of applying function to element j of each of the argument
sequences. The result sequence is as long as the shortest of the input sequences.”

This kind of map combinator is known to compromise on orthogonality. That is, map-
ping over a single list is sufficient — if we assume a separate notion of ‘zipping’ such
that n lists are zipped together to a single list of n-tuples.

reduce function sequence &key :from-end :start :end :initial-value

“The reduce function combines all the elements of a sequence using a binary op-
eration; for example, using + one can add up all the elements.

The specified subsequence of the sequence is combined or “reduced” using the
function, which must accept two arguments. The reduction is left-associative,
unless the : from—-end argument is true (it defaults to nil), in which case it
is right-associative. If an :initial-value argument is given, it is logically
placed before the subsequence (after it if : from—end is true) and included in the
reduction operation.

If the specified subsequence contains exactly one element and the keyword ar-
gument :initial-value is not given, then that element is returned and
the function is not called. If the specified subsequence is empty and an
sinitial-value is given, then the :initial-value is returned and the
function is not called.

If the specified subsequence is empty and no :initial-value is given, then
the function is called with zero arguments, and reduce returns whatever the
function does. (This is the only case where the function is called with other
than two arguments.)”

(We should note that this is not yet the most general definition of reduction in Common
Lisp.) It is common to assume that function is free of side effects, and it is an
associative (binary) operation with : initial-value as its unit. In the remainder
of the paper, we will be using the term ‘proper reduction’ in such a case.

2At the time of writing, the relevant quotes are available on-line: http://www.cs.cmu.edu/
Groups/AI/html/cltl/clm/nodel43.html.

http://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node143.html
http://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node143.html

2.3 Haskell’s map & reduce

The Haskell standard library (in fact, the so-called ‘prelude’) defines related combina-
tors. Haskell’s map combinator processes a single list as opposed to Lisp’s combinator
for an arbitrary number of lists. The kind of left-associative reduction of Lisp is pro-
vided by Haskell’s foldl combinator — except that the type of foldl is more general
than necessary for reduction. We attach some Haskell illustrations that can be safely
skipped by the reader with proficiency in typed functional programming.

Ilustration of map: Let us double all numbers in a list:

Haskell-prompt> map ((x) 2) [1,2,3]
[2,4,6]

Here, the expression ‘ ((x) 2)’ denotes multiplication by 2.

In (Haskell’s) lambda notation, ‘((x) 2)’ can also be rendered as ‘\x —> 2xx’.

Illustration of foldl: Let us compute the sum of all numbers in a list:

Haskell-prompt> foldl (+) 0 [1,2,3]
6

Here, the expression ‘(+)’ denotes addition and the constant ‘0’ is the default value.
The left-associative bias of foldl should be apparent from the parenthesization in the
following evaluation sequence:

foldl (+) 0 [1,2,3]
= (((0 +1) +2) +3)
= 6

Definition of map

map :: (a —>b) —> [a] —> [b] —— type of map
map f [] =] —— equation: the empty list case
map f (x:xs) = f x : mapfxs —— equation: the non—empty list case

The (polymorphic) type of the map combinator states that it takes two arguments: a
function of type a —> b, and a list of type [a]. The result of mapping is a list of type
[b]. The type variables a and b correspond to the element types of the argument and
result lists. The first equation states that mapping f over an empty list (denoted as [])
returns the empty list. The second equation states that mapping f over a non-empty
list, x:xs, returns a list whose head is f applied to x, and whose tail is obtained by
recursively mapping over xs.

Haskell trivia
e Line comments start with ‘——".
e Function names start in lower case; cf. map and foldl.

o In types, "...—>... denotes the type constructor for function types.

e Intypes, ' [...] *denotes the type constructor for lists.

o Term variables start in lower case; cf. X and XS.

e Type variables start in lower case, too; cf. a and b.

o Type variables are implicitly universally quantified, but can be explicitly universally quan-
tified. For instance, the type of map changes as follows, when using explicit quantifica-
tion: map :: forall ab. (a —> b) —> [a] —> [b]

e Terms of a list type can be of two forms:

— The empty list: ’ []’

— The non-empty list consisting of head and tail: ... : ...

’

Definition of foldl

foldl :: (b —>a—>b)—>b —>[a] —> b —— type of foldl

foldl fy [] =y —— equation: the empty list case
foldl fy (x:xs) = foldl f (f yx)xs —— equation: the non—empty list case

The type of the foldl combinator states that it takes three arguments: a binary operation
of typeb —> a —> b, a ‘default value’ of type b and a list of type [a] to fold over. The
result of folding is of type b. The first equation states that an empty list is mapped to
the default value. The second equation states that folding over a non-empty list requires
recursion into the tail and application of the binary operation f to the folding result so
far and the head of the list. We can restrict foldl to what is normally called reduction
by type specialization:

reduce :: (a—>a—->a)—->a—->[al—>a
reduce = foldl

Asides on folding

e For the record, we mention that the combinators map and foldl can actually
be both defined in terms of the right-associative fold operation, foldr, [23, 20].
Hence, foldr can be considered as the fundamental recursion scheme for list
traversal. The functions that are expressible in terms of foldr are also known as
‘list catamorphisms’ or ‘bananas’. We include the definition of foldr for com-
pleteness’ sake:

foldr :: (a —>b —>b)—>b —>[a] —> b —— rype of foldr
foldr fy [] =y —— equation: the empty list case
foldr f y (x:xs) f x (foldr f y xs) —— equation: the non—empty list case

e Haskell’s lazy semantics makes applications of foldl potentially inefficient due to
unevaluated chunks of intermediate function applications. Hence, it is typically
advisable to use a strict companion or the right-associative fold operator, foldr,
but we neglect such details of Haskell in the present paper.

e Despite left-associative reduction as Lisp’s default, one could also take the po-
sition that reduction should be right-associative. We follow Lisp for now and
reconsider in Sec. 5, where we notice that monoidal reduction in Haskell is typi-
cally defined in terms of foldr — the right-associative fold combinator.

2.4 MapReduce’s map & reduce

Here is the obvious question. How do MapReduce’s map and reduce correspond to
standard map and reduce? For clarity, we use a designated font for MapReduce’s
MAP and REDUCE, from here on. The following overview lists more detailed ques-
tions and summarizes our findings:

Question ‘ Finding

Is MAP essentially the map combinator? NO

Is MAP essentially an application of the map combinator? NO

Does M AP essentially serve as the argument of map? YES

Is REDUCE essentially the reduce combinator? NO

Is REDUCE essentially an application of the reduce combinator? | TYPICALLY
Does REDUCE essentially serve as the argument of reduce? NO

Does REDUCE essentially serve as the argument of map? YES

Hence, there is no trivial correspondence between MapReduce’s MAP & REDUCE
and what is normally called map & reduce in functional programming. Also, the re-
lationships between M.AP and map are different from those between REDUCE and
reduce. For clarification, let us consider again the sample code for the problem of
counting occurrences of words:

map (String key, String value): reduce (String key, Iterator values):
// key: document name // key: a word
// value: document contents // values: a list of counts
for each word w in value: int result = 0;
EmitIntermediate (w, "1"); for each v in values:

result += Parselnt (v);
Emit (AsString(result));

Per programming model, both functions are applied to key/value pairs one by one.
Naturally, our executable specification will use the standard map combinator to apply
MAP and REDUCE to all input or intermediate data. Let us now focus on the inner
workings of M AP and REDUCE.

Internals of REDUCE: The situation is straightforward at first sight. The above
code performs imperative aggregation (say, reduction): take many values, and reduce
them to a single value. This seems to be the case for most MapReduce examples that
are listed in [10]. Hence, MapReduce’s REDUCE typically performs reduction, i.e., it
can be seen as an application of the standard reduce combinator.

However, it is important to notice that the MapReduce programmer is not encour-
aged to identify the ingredients of reduction, i.e., an associative operation with its unit.

Also, the assigned type of REDUCE, just by itself, is slightly different from the type to
be expected for reduction, as we will clarify in the next section. Both deviations from
the functional programming letter may have been chosen by the MapReduce designers
for reasons of flexibility. Here is actually one example from the MapReduce paper that
goes beyond reduction in a narrow sense [10]:

“Inverted index: The map function parses each document, and emits a
sequence of (word,document ID) pairs. The reduce function accepts all
pairs for a given word, sorts the corresponding document IDs and emits a
(word, list(document ID)) pair”

In this example, REDUCE performs sorting as opposed to the reduction of many values
to one. The MapReduce paper also alludes to filtering in another case. We could
attempt to provide a more general characterization for REDUCE. Indeed, our Sawzall
investigation in Sec. 5 will lead to an appropriate generalization.

Internals of MAP: We had already settled that M AP is mapped over key/value
pairs (just as much as REDUCE). So it remains to poke at the internal structure of
MAP to see whether there is additional justification for M.AP to be related to map-
ping (other than the sort of mapping that also applies to REDUCE). In the above
sample code, MAP splits up the input value into words; alike for the ‘inverted index’
example that we quoted. Hence, MAP seems to produce lists, it does not seem to
traverse lists, say consume lists. In different terms, M.AP is meant to associate each
given key/value pair of the input with potentially many intermediate key/value pairs.
For the record, we mention that the typical kind of M AP function could be character-
ized as an instance of unfolding (also known as anamorphisms or lenses [23, 16, 1.3

3 The MapReduce abstraction

We will now enter reverse-engineering mode with the goal to extract an executable
specification (in fact, a relatively simple Haskell function) that captures the abstraction
for MapReduce computations. An intended byproduct is the detailed demonstration of
Haskell as a tool for design recovery and executable specification.

3.1 The power of ¢

Let us discover the main blocks of a function mapReduce, which is assumed to model
the abstraction for MapReduce computations. We recall that M.AP is mapped over
the key/value pairs of the input, while REDUCE is mapped over suitably grouped
intermediate data. Grouping takes place in between the map and reduce phases [10]:
“The MapReduce library groups together all intermediate values associated with the
same intermediate key I and passes them to the reduce function”. Hence, we take for
granted that mapReduce can be decomposed as follows:

3The source-code distribution illustrates the use of unfolding (for the Words function) in the map phase;
cf. module Misc.Unfold.

mapReduce mAP rEDUCE

= reducePerKey —— 3. Apply REDUCE to each group
. groupByKey —— 2. Group intermediate data per key
. mapPerKey —— 1. Apply MAP to each key/value pair
where
mapPerKey = L1 —— to be discovered
groupByKey =1 —— to be discovered
reducePerKey = | —— to be discovered

Here, the arguments mAP and rEDUCE are placeholders for the problem-specific func-
tions MAP and REDUCE. The function mapReduce is the straight function composi-
tion over locally defined helper functions mapPerKey, groupByKey and reducePerKey,
which we leave undefined — until further notice.

We defined the mapReduce function in terms of function composition, which is
denoted by Haskell’s infix operator ‘. (The dot ‘applies from right to left’, i.e.,
(g -f) x = g (f z).) The systematic use of function composition improves clarity.
That is, the definition of the mapReduce function expresses very clearly that a MapRe-
duce computation is composed from three phases.

More Haskell trivia: For comparison, we also illustrate other styles of composing together
the mapReduce function from the three components. Here is a transcription that uses Haskell’s
plain function application:

mapReduce mAP rEDUCE input =
reducePerKey (groupByKey (mapPerKey input))
where

Function application, when compared to function composition, slightly conceals the fact that a
MapReduce computation is composed from three phases. Haskell’s plain function application,
as exercised above, is left-associative and relies on juxtaposition (i.e., putting function and ar-
gument simply next to each other). There is also an explicit operator, ‘$’ for right-associative
function application, which may help reducing parenthesization. For instance, ‘f $ X y’ denotes
‘f (X y)’. Here is another version of the mapReduce function:

mapReduce mAP rEDUCE input =
reducePerKey

$ groupByKey

$ mapPerKey input

where

<

For the record, the systematic use of function combinators like ‘.’ leads to ‘point-free’
style [3, 14, 15]. The term ‘point’ refers to explicit arguments, such as input in the
illustrative code snippets, listed above. That is, a point-free definition basically only
uses function combinators but captures no arguments explicitly. Backus, in his Turing
Award lecture in 1978, also uses the term ‘functional forms’ [2].

10

3.2 The undefinedness idiom

In the first draft of the mapReduce function, we left all components undefined. (The
textual representation for Haskell’s ‘1’ (say, bottom) is ‘undefined’.) Generally. ‘1’
is an extremely helpful instrument in specification development. By leaving functions
‘undefined’, we can defer discovering their types and definitions until later. Of course,
we cannot evaluate an undefined expression in any useful way:

Haskell-prompt> undefined
x++ Exception: Prelude.undefined

Taking into account laziness, we may evaluate partial specifications as long as we are
not ‘strict’ in (say, dependent on) undefined parts. More importantly, a partial specifi-
cation can be type-checked. Hence, the ‘undefinedness’ idiom can be said to support
top-down steps in design. The convenient property of ‘L’ is that it has an extremely
polymorphic type:

Haskell-prompt> 1 undefined
undefined :: a

Hence, ‘L’ may be used virtually everywhere. Functions that are undefined (i.e., whose
definition equals ‘1”) are equally polymorphic and trivially participate in type infer-
ence and checking. One should compare such expressiveness with the situation in
state-of-the-art OO languages such as C# 3.0 or Java 1.6. That is, in these languages,
methods must be associated with explicitly declared signatures, despite all progress
with type inference. The effectiveness of Haskell’s ‘undefinedness’ idiom relies on
full type inference so that ‘1’ can be used freely without requiring any annotations for
types that are still to be discovered.

3.3 Type discovery from prose

The type of the scheme for MapReduce computations needs to be discovered. (It is not
defined in the MapReduce paper.) We can leverage the types for M AP and REDUCE,
which are defined as follows [10]:

”Conceptually the map and reduce functions [...] have associated types:

map (k1,v1) —> list(k2,v2)
reduce (k2, list (v2)) —> list(v2)

Le., the input keys and values are drawn from a different domain than the
output keys and values. Furthermore, the intermediate keys and values are
from the same domain as the output keys and values.”

The above types are easily expressed in Haskell — except that we must be careful to
note that the following function signatures are somewhat informal because of the way
we assume sharing among type variables of function signatures.

map Dokl => vl —> [(k2,v2)]
reduce : k2 —> [v2] —> [v2]

11

(Again, our reuse of the type variables k2 and v2 should be viewed as an informal hint.)
The type of a MapReduce computation was informally described as follows [10]: “the
computation takes a set of input key/value pairs, and produces a set of output key/value
pairs”. We will later discuss the tension between ‘list’ (in the earlier types) and ‘set’
(in the wording). For now, we just continue to use ‘list’, as suggested by the above
types. So let us turn prose into a Haskell type:

computation 1 [(k1,v1)] —> [(k2,v2)]
Hence, the following type is implied for mapReduce:

—— To be amended!
mapReduce :: (k1 —> v1 —> [(k2,v2)]) —— The MAP function

—> (k2 —> [v2] —> [v2]) —— The REDUCE function
—> [(k1,v1)] —— A ser of input key/value pairs
—> [(k2,v2)] —— A set of output key/value pairs

Haskell sanity-checks this type for us, but this type is not the intended one. An applica-
tion of REDUCE is said to return a list (say, a group) of output values per output key.
In contrast, the result of a MapReduce computation is a plain list of key/value pairs.
This may mean that the grouping of values per key has been (accidentally) lost. (We
note that this difference only matters if we are not talking about the ‘typical case’ of
zero or one value per key.) We propose the following amendment:

mapReduce :: (k1 —> v1 —> [(k2,v2)]) —— The MAP function

—> (k2 —> [v2] —> [v2]) —— The REDUCE function
—> [(k1,v1)] —— A set of input key/value pairs
—> [(k2,[v2])] —— A set of output key/value—list pairs

The development illustrates that types greatly help in capturing and communicating
designs (in addition to plain prose with its higher chances of imprecision). Clearly,
for types to serve this purpose effectively, we are in need of a type language that is
powerful (so that types carry interesting information) as well as readable and succinct.

3.4 Type-driven reflection on designs

The readability and succinctness of types is also essential for making them useful in
reflection on designs. In fact, how would we somehow systematically reflect on designs
other than based on types? Design patterns [12] may come to mind. However, we
contend that their actual utility for the problem at hand is non-obvious, but one may
argue that we are in the process of discovering a design pattern, and we inform our
proposal in a type-driven manner.

The so-far proposed type of mapReduce may trigger the following questions:

e Why do we need to require a list type for output values?
e Why do the types of output and intermediate values coincide?

e When do we need lists of key/value pairs, or sets, or something else?

These questions may pinpoint potential over-specifications.

12

Why do we need to require a list type for output values?

Let us recall that the programming model was described such that “typically just zero
or one output value is produced per reduce invocation” [10]. We need a type for
REDUCE such that we cover the ‘general case’, but let us briefly look at a type for the
‘typical case’:

mapReduce :: (k1 —> v1 —> [(k2,v2)]) —— The MAP function
—> (k2 —> [v2] —> Maybe v2) —— The REDUCE function
—> [(k1,v1)] —— A set of input key/value pairs
—> [(k2,v2)] —— A set of output key/value pairs

The use of Maybe allows the REDUCE function to express that “zero or one” output
value is returned for the given intermediate values. Further, we assume that a key
with the associated reduction result Nothing should not contribute to the final list of
key/value pairs. Hence, we omit Maybe in the result type of mapReduce.

More Haskell trivia: We use the Maybe type constructor to model optional values. Values
of this type can be constructed in two ways. The presence of a value v is denoted by a term of
the form ‘Justv’, whereas the absence of any value is denoted by ‘Nothing’. For completeness’
sake, here is the declaration of the parametric data type Maybe:

data Maybe v = Just v | Nothing

Why do the types of output and intermediate values coincide?

Reduction is normally understood to take many values and to return a single value (of
the same type as the element type for the input). However, we recall that some MapRe-
duce scenarios go beyond this typing scheme; recall sorting and filtering. Hence, let us
experiment with the distinction of two types:

e v2 for intermediate values;

e v3 for output values.

The generalized type for the typical case looks as follows:

mapReduce :: (k1 —> v1 —> [(k2,v2)]) —— The MAP function
—> (k2 —> [v2] —> Maybe v3) —— The REDUCE function
—> [(k1,v1)] —— A set of input key/value pairs
—> [(k2,v3)] —— A set of output key/value pairs

It turns out that we can re-enable the original option of multiple reduction results by
instantiating v3 to a list type. For better assessment of the situation, let us consider a
list of options for REDUCE’s type:

13

k2 —> [v2] —> [v2] (The original type from the MapReduce paper)

o k2 —> [v2] —> v2 (The type for Haskell/Lisp-like reduction)
e k2 —> [v2] —> V3 (With a type distinction as in folding)
o k2 —> [v2] —> Maybe v2 (The typical MapReduce case)
e k2 —> [v2] —> Maybe v3 (The proposed generalization)

We may instantiate v3 as follows:

e V31> v2 We obtain the aforementioned typical case.

e V31— [v2] We obtain the original type — almost.

The generalized type admits two ‘empty’ values: Nothing and Just []. This slightly
more complicated situation allows for more precision. That is, we do not need to
assume an overloaded interpretation of the empty list to imply the omission of a corre-
sponding key/value pair in the output.

When do we need lists of key/value pairs, or sets, or something else?

Let us reconsider the sloppy use of lists or sets of key/value pairs in some prose we
had quoted. We want to modify mapReduce’s type one more time to gain in precision
of typing. It is clear that saying ‘lists of key/value pairs’ does neither imply mutually
distinct pairs nor mutually distinct keys. Likewise, saying ‘sets of key/value pairs’
only rules out the same key/value pair to be present multiple times. We contend that a
stronger data invariant is needed at times — the one of a dictionary type (say, the type
of an association map or a finite map). We revise the type of mapReduce one more
time, while we leverage an abstract data type, Data.Map.Map, for dictionaries:

import Data.Map —— Library for dictionaries

mapReduce :: (k1 —> v1 —> [(k2,v2)]) —— The MAP function
—> (k2 —> [v2] —> Maybe v3) —— The REDUCE function
—> Map k1 vl —— A key to input —value mapping

—> Map k2 v3 —— A key to output—value mapping

It is important to note that we keep using the list-type constructor in the result position
for the type of MAP. Prose [10] tells us that MAP “produces a set of intermediate
key/value pairs”, but, this time, it is clear that lists of intermediate key/value pairs are
meant. (Think of the running example where many pairs with the same word may
appear, and they all should count.)

Haskell’s dictionary type: We will be using the following operations on dictionaries:
o folist —- export dictionary as list of pairs.
o fromList —- construct dictionary from list of pairs.
e empty — construct the empty dictionary.
e insert — insert key/value pair into dictionary.

14

o mapWithKey — list-like map over a dictionary: this operation operates on the key/value
pairs of a dictionary (as opposed to lists of arbitrary values). Mapping preserves the key
of each puair.

o filterWithKey — filter dictionary according to predicate: this operation is essentially
the standard filter operation for lists, except that it operates on the key/value pairs of a
dictionary. That is, the operation takes a predicate that determines all elements (key/value
pairs) to remain in the dictionary.

o insertWith — insert with aggregating value domain: Consider an expression of the form
‘insertWith o k v dict’. The result of its evaluation is defined as follows. If dict does
not hold any entry for the key k, then dict is extended by an entry that maps the key k to
the value v. If dict readily maps the key k to a value v', then this entry is updated with a
combined value, which is obtained by applying the binary operation o to v' and v.

e unionsWith — combine dictionaries with aggregating value domain.

<

The development illustrates that types may be effectively used to discover, identify and
capture invariants and variation points in designs. Also, the development illustrates that
type-level reflection on a problem may naturally trigger generalizations that simplify
or normalize designs.

3.5 Discovery of types

We are now in the position to discover the types of the helper functions mapPerKey,
groupByKey and reducePerKey. While there is no rule that says ‘discover types first,
discover definitions second’, this order is convenient in the situation at hand.

We should clarify that Haskell’s type inference does not give us useful types for
mapPerKey and the other helper functions. The problem is that these functions are
undefined, hence they carry the uninterestingly polymorphic type of ‘L’. We need to
take into account problem-specific knowledge and the existing uses of the undefined
functions.

We start from the ‘back’ of mapReduce’s function definition — knowing that we
can propagate the input type of mapReduce through the function composition. For
ease of reference, we inline the definition of mapReduce again:

mapReduce mAP rEDUCE = reducePerKey . groupByKey . mapPerKey where ...

The function mapPerKey takes the input of mapReduce, which is of a known type.
Hence, we can sketch the type of mapPerKey so far:

. where

mapPerKey :: Map k1 v1 —— A key to input —value mapping
> 77?7 —— What’s the result and its type?

15

More Haskell trivia: We must note that our specification relies on a Haskell 98 extension
for lexically scoped type variables [25]. This extension allows us to reuse type variables from
the signature of the top-level function mapReduce in the signatures of local helpers such as
mapPerKey.*

O

The discovery of mapPerKey’s result type requires domain knowledge. We know that
mapPerKey maps MAP over the input; the type of MAP tells us the result type for
each element in the input: a list of intermediate key/value pairs. We contend that the
full map phase over the entire input should return the same kind of list (as opposed to
a nested list). Thus:

. where
mapPerKey :: Map k1 v1 —— A key to input —value mapping
—> [(k2,v2)] —— The intermediate key/value pairs

The result type of mapPerKey provides the argument type for groupByKey. We also
know that groupByKey “groups together all intermediate values associated with the
same intermediate key”, which suggests a dictionary type for the result. Thus:

. where
groupByKey :: [(k2,v2)] —— The intermediate key/value pairs
—> Map k2 [v2] —— The grouped intermediate values

The type of reducePerKey is now sufficiently constrained by its position in the chained
function composition: its argument type coincides with the result type of groupByKey;
its result type coincides with the result type of mapReduce. Thus:

. where
reducePerKey :: Map k2 [v2] —— The grouped intermediate values
—> Map k2v3 —— Akeyto output—value mapping

Starting from types or definitions: We have illustrated the use of ‘starting from
types’ as opposed to ‘starting from definitions’ or any mix in between. When we start
from types, an interesting (non-trivial) type may eventually suggest useful ways of
populating the type. In contrast, when we start from definitions, less interesting or
more complicated types may eventually be inferred from the (more interesting or less
complicated) definitions. As an aside, one may compare the ‘start from definitions
vs. types’ scale with another well-established design scale for software: top-down or
bottom-up or mixed mode.

3.6 Discovery of definitions

It remains to define mapPerKey, groupByKey and reducePerKey. The discovered types
for these helpers are quite telling; we contend that the intended definitions could be
found semi-automatically, if we were using an ‘informed’ type-driven search algorithm

4The source-code distribution for this paper also contains a pure Haskell 98 solution where we engage in
encoding efforts such that we use an auxiliary record type for imposing appropriately polymorphic types on
mapReduce and all its ingredients; cf. module MapReduce.Haskell98.

16

module MapReduce.Basic (mapReduce) where
import Data.Map (Map,empty,insertWith,mapWithKeyfilterWithKey,toList)

mapReduce :: forall k1 k2 v1 v2 v3.

Ord k2 —— Needed for grouping
=> (k1 —> v1 —> [(k2,v2)]) —— The M AP function
—> (k2 —> [v2] —> Maybe v3) —— The REDUCE function
—> Map k1 vl —— A key to input —value mapping

—> Map k2 v3 —— A key to output—value mapping

mapReduce mAP rEDUCE =

reducePerKey —— 3. Apply REDUCE to each group
. groupByKey —— 2. Group intermediate data per key
. mapPerKey —— 1. Apply MAP to each key/value pair
where
mapPerKey :: Map k1 v1 —> [(k2,v2)]
mapPerKey =
concat —— 3. Concatenate per—key lists
. map (uncurry mAP) —— 2. Map MAP over list of pairs
. toList —— 1. Turn dictionary into list

groupByKey :: [(k2,v2)] —> Map k2 [v2]
groupByKey = foldl insert empty
where
insert dict (k2,v2) = insertWith (++) k2 [v2] dict

reducePerKey :: Map k2 [v2] —> Map k2 v3

reducePerKey =
mapWithKey undJust —— 3. Transform type to remove Maybe
. filterWithKey isJust —— 2. Remove entries with value Nothing
. mapWithKey rEDUCE —— 1. Apply REDUCE per key
where
isdust k (Just v) =True —— Keep entries of this form
isdust k Nothing = False —— Remove entries of this form
undustk (Justv) =v —— Transforms optional into non—optional typé

Figure 1: The baseline specification for MapReduce

for expressions that populate a given type. We hope to prove this hypothesis some day.
For now, we discover the definitions in a manual fashion. As a preview, and for ease of

reference, the complete mapReduce function is summarized in Fig. 1.

The helper mapPerKey is really just little more than the normal list map followed by
concatenation. We either use the map function for dictionaries to first map M.AP over
the input and then export to a list of pairs, or we first export the dictionary to a list of

17

pairs and proceed with the standard map for lists. Here we opt for the latter:

. where
mapPerKey
= concat —— 3. Concatenate per—key lists
. map (uncurry mAP) —— 2. Map MAP over list of pairs
. toList —— 1. Turn dictionary into list

More Haskell trivia: In the code shown above, we use two more functions from the prelude.
The function concat turns a list of lists into a flat list by appending them together; cf. the use of
the (infix) operator ‘++’ for appending lists. The combinator uncurry transforms a given func-
tion with two (curried) arguments into an equivalent function that assumes a single argument,
in fact, a pair of arguments. Here are the signatures and definitions for these functions (and two

helpers):

concat :: [[a]] —> [a]
concat xss = foldr (++) [] xss

uncurry :: (a —>b —>c¢) —> ((a, b) —> ¢)
uncurry f p =1 (fst p) (sndp)

fst (x,y) =X —— first projection for a pair
snd (x,y) =y —— second projection for a pair

The helper reducePerKey essentially maps REDUCE over the groups of intermedi-
ate data while preserving the key of each group; see the first step in the function com-
position below. Some trivial post-processing is needed to eliminate entries for which
reduction has computed the value Nothing.

. where
reducePerKey =
mapWithKey unJust —— 3. Transform type to remove Maybe
. filterWithKey isJust —— 2. Remove entries with value Nothing
. mapWithKey rEDUCE —— 1. Apply REDUCE per key
where
isdust k (Just v) =True —— Keep entries of this form
isdust k Nothing = False —— Remove entries of this form
undustk (Justv) =v —— Transforms optional into non—optional type

Conceptually, the three steps may be accomplished by a simple fold over the dictio-

nary — except that the Data.Map.Map library (as of writing) does not provide an oper-
ation of that kind.

18

The helper groupByKey is meant to group intermediate values by intermediate key.

. where
groupByKey = foldl insert empty
where insert dict (k2,v2) = insertWith (++) k2 [v2] dict

Grouping is achieved by the construction of a dictionary which maps keys to its asso-
ciated values. Each single intermediate key/value pair is ‘inserted’ into the dictionary;
cf. the use of Data.Map.insertWith. A new entry with a singleton list is created, if the
given key was not yet associated with any values. Otherwise the singleton is appended
to the values known so far. The iteration over the key/value pairs is expressed as a fold.

Types bounds required by the definition: Now that we are starting to use some
members of the abstract data type for dictionaries, we run into a limitation of the func-
tion signatures, as discovered so far. In particular, the type of groupByKey is too poly-
morphic. The use of insertWith implies that intermediate keys must be comparable.
The Haskell type checker (here: GHC’s type checker) readily tells us what the problem
is and how to fix it:

No instance for (Ord k2) arising from use of ‘insert’.
Probable fix: add (Ord k2) to the type signature(s) for ‘groupByKey’.

So we constrain the signature of mapReduce as follows:

mapReduce :: forall k1 k2 v1 v2v3.

Ord k2 —— Needed for grouping
=> (k1 —>v1 —> [(k2,v2)]) —— The M AP function
—> (k2 —> [v2] —> Maybe v3) —— The REDUCE function
—> Map k1 vl —— A key to input —value mapping

—> Map k2 v3 —— A key to output—value mapping
where

More Haskell trivia:

o [n the type of the top-level function, we must use explicit universal quantification (see
‘forall ’) in order to take advantage of the Haskell 98 extension for lexically scoped type
variables. We have glanced over this detail before.

e Ord is Haskell’s standard type class for comparison. If we want to use comparison for
a polymorphic type, then each explicit type signature over that type needs to put an Ord
bound on the polymorphic type. In reality, the type class Ord comprises several members,
but, in essence, the type class is defined as follows:

class Ord a where compare ::a —> a —> Ordering

Hence, any ‘comparable type’ must implement the compare operation. In the type of
compare, the data type Ordering models the different options for comparison results:

data Ordering =LT| EQ| GT

19

3.7 Time to demo

Here is a MapReduce computation for counting occurrences of words in documents:

wordOccurrenceCount = mapReduce mAP rEDUCE

where
mAP = const (map (flip (,) 1) . words) —— each word counts as 1
rEDUCE = const (Just . sum) —— compute sum of all counts

Essentially, the M. AP function is instantiated to extract all words from a given doc-
ument, and then to couple up these words with ‘1’ in pairs; the REDUCE function is
instantiated to simply reduce the various counts to their sum. Both functions do not
observe the key — as evident from the use of const.

More Haskell trivia: In the code shown above, we use a few more functions from the pre-
lude. The expression ‘const x’ manufactures a constant function, i.e., ‘const x y’ equals x, no
matter the y. The expression “ flip f’ inverse the order of the first two arguments of f, i.e., “ flip
fxy equals ‘f y x’. The expression ‘Sum xs’ reduces xs (a list of numbers) to its sum. Here
are the signatures and definitions for these functions:

const : a—>b-—->a
constab=a

fip @ (@a—-—>b—->c¢c)—>b->a->c
flip fxy= fyx

sum :: (Numa)=>[a] —> a
sum = foldl (+) O

We can test the mapReduce function by feeding it with some documents.

main = print

$ wordOccurrenceCount

$ insert “doc2” ” appreciate the unfold”
$ insert “doc1” ”fold the fold”

empty

©“

Haskell-prompt™ main

{” appreciate ”:=1,”fold”:=2,”the”:=2, ”unfold”:=1}

This test code constructs an input dictionary by adding two ‘documents’ to the initial,
empty dictionary. Each document comprises a name (cf. “doc1” and ”doc2”) and con-
tent. Then, the test code invokes wordOccurrenceCount on the input dictionary and
prints the resulting output dictionary.

20

4 Parallel MapReduce computations

The programmer can be mostly oblivious to parallelism and distribution; the program-
ming model readily enables parallelism, and the MapReduce implementation takes care
of the complex details of distribution such as load balancing, network performance and
fault tolerance. The programmer has to provide parameters for controlling distribution
and parallelism, such as the number of reduce tasks to be used. Defaults for the control
parameters may be inferable.

In this section, we will first clarify the opportunities for parallelism in a distributed
execution of MapReduce computations. We will then recall the strategy for distributed
execution, as it was actually described in the seminal MapReduce paper. These prepa-
rations ultimately enable us to refine the basic specification from the previous section
so that parallelism is modeled.

4.1 Opportunities for parallelism

Parallel map over input: Input data is processed such that key/value pairs are pro-
cessed one by one. It is well known that this pattern of a list map is amenable to total
data parallelism [27, 28, 5, 29]. That is, in principle, the list map may be executed
in parallel at the granularity level of single elements. Clearly, M.AP must be a pure
function so that the order of processing key/value pairs does not affect the result of the
map phase and communication between the different threads can be avoided.

Parallel grouping of intermediate data The grouping of intermediate data by key,
as needed for the reduce phase, is essentially a sorting problem. Various parallel sorting
models exist [18, 6, 32]. If we assume a distributed map phase, then it is reasonable to
anticipate grouping to be aligned with distributed mapping. That is, grouping could be
performed for any fraction of intermediate data and distributed grouping results could
be merged centrally, just as in the case of a parallel-merge-all strategy [11].

Parallel map over groups: Reduction is performed for each group (which is a key
with a list of values) separately. Again, the pattern of a list map applies here; total data
parallelism is admitted for the reduce phase — just as much as for the map phase.

Parallel reduction per group: Let us assume that REDUCE defines a proper re-
duction; as defined in Sec. 2.2. That is, REDUCE reveals itself as an operation
that collapses a list into a single value by means of an associative operation and its
unit. Then, each application of REDUCE can be massively parallelized by computing
sub-reductions in a tree-like structure while applying the associative operation at the
nodes [27, 28, 5, 29]. If the binary operation is also commutative, then the order of
combining results from sub-reductions can be arbitrary. Given that we already paral-
lelize reduction at the granularity of groups, it is non-obvious that parallel reduction of
the values per key could be attractive.

21

Input data Intermediate data Output data
k1| vi
partition 1 | k2| v2
p| ece l k2| v3
reduce 1
[

| [|

| [| R (N
| | N 11
[AN o
| | A 11
| | N N 11
| | AN N
I I I Q|
I I I PANNN
| | | . I
| | | ’ (N
\ | \ e N
| | | L’ [N
| | ’ {1
\ 1 o
| |

|

|

| | |

| |
iece M .
P partition R

Figure 2: Map split input data and reduce partitioned intermediate data

4.2 A distribution strategy

Let us recapitulate the particular distribution strategy from the seminal MapReduce
paper, which is based on large networked clusters of commodity machines with local
store while also exploiting other bits of Google infrastructure such as the Google file
system [13]. The strategy reflects that the chief challenge is network performance in
the view of the scarce resource network bandwidth. The main trick is to exploit locality
of data. That is, parallelism is aligned with the distributed storage of large data sets
over the clusters so that the use of the network is limited (as much as possible) to steps
for merging scattered results. Fig. 2 depicts the overall strategy. Basically, input data is
split up into pieces and intermediate data is partitioned (by key) so that these different
pieces and partitions can be processed in parallel.

e The input data is split up into M pieces to be processed by M map tasks, which
are eventually assigned to worker machines. (There can be more map tasks than
simultaneously available machines.) The number M may be computed from
another parameter S — the limit for the size of a piece; S may be specified
explicitly, but a reasonable default may be implied by file system and machine
characteristics. By processing the input in pieces, we exploit data parallelism for
list maps.

22

The splitting step is optional. Subject to appropriate file-system support (such as
the Google file system), one may assume ‘logical files’ (say for the input or the
output of a MapReduce computation) to consist of ‘physical blocks’ that reside
on different machines. Alternatively, a large data set may also be modeled as a
set of files as opposed to a single file. Further, storage may be redundant, i.e.,
multiple machines may hold on the same block of a logical file. Distributed,
redundant storage can be exploited by a scheduler for the parallel execution so
that the principle of data locality is respected. That is, worker machines are
assigned to pieces of data that readily reside on the chosen machines.

There is a single master per MapReduce computation (not shown in the figure),
which controls distribution such that worker machines are assigned to tasks and
informed about the location of input and intermediate data. The master also
manages fault tolerance by pinging worker machines, and by re-assigning tasks
for crashed workers, as well as by speculatively assigning new workers to com-
pete with ‘stragglers’ — machines that are very slow for some reason (such as
hard-disk failures).

Reduction is distributed over R tasks covering different ranges of the interme-
diate key domain, where the number R can be specified explicitly. Again, data
parallelism for list maps is put to work. Accordingly, the results of each map
task are stored in R partitions so that the reduce tasks can selectively fetch data
from map tasks.

When a map task completes, then the master may forward local file names from
the map workers to the reduce workers so that the latter can fetch intermediate
data of the appropriate partitions from the former. The map tasks may perform
grouping of intermediate values by keys locally. A reduce worker needs to merge
the scattered contributions for the assigned partition before REDUCE can be
applied on a per-key basis, akin to a parallel-merge-all strategy.

Finally, the results of the reduce tasks can be concatenated, if necessary. Alter-
natively, the results may be left on the reduce workers for subsequent distributed
data processing, e.g., as input for another MapReduce computation that may
readily leverage the scattered status of the former result for the parallelism of its
map phase.

There is one important refinement to take into account. To decrease the volume of
intermediate data to be transmitted from map tasks to reduce tasks, we should aim to
perform local reduction before even starting transmission. As an example, we consider
counting word occurrences again. There are many words with a high frequency, e.g.,
‘the’. These words would result in many intermediate key/value pairs such as (‘the’,1).
Transmitting all such intermediate data from a map task to a reduce task would be a
considerable waste of network bandwidth. The map task may already combine all such
pairs for each word.

The refinement relies on a new (optional) argument, COMBIN ER, which is a

function “that does partial merging of this data before it is sent over the network.

23

[...] Typically the same code is used to implement both the combiner and reduce func-
tions” [10]. When both functions implement the same proper reduction, then, concep-
tually, this refinement leverages the opportunity for massive parallelism of reduction
of groups per key, where the tree structure for parallel reduction is of depth 2, with
the leafs corresponding to local reduction. It is worth emphasizing that this parallelism
does not aim at a speedup on the grounds of additional processors; in fact, the number
of workers remains unchanged. So the sole purpose of a distributed reduce phase is to
decrease the amount of data to be transmitted over the network.

4.3 The refined specification

The following specification does not formalize task scheduling and the use of a dis-

tributed file system (with redundant and distributed storage). Also, we assume that the

input data is readily split and output data is not concatenated.”> Furthermore, let us

start with ‘explicit parallelization’. That is, we assume user-defined parameters for the

number of reduce tasks and the partitioning function for the intermediate key domain.
Here is the signature of the new mapReduce function:

mapReduce :: Ord k2 =>

Int —— Number of partitions

—> (k2 —> Int) —— Partitioning for keys

—> (k1 —> v1 —> [(k2,v2)]) —— The M AP function

—> (k2 —> [v2] —> Maybe v3) —— The COMBINER function

—> (k2 —> [v3] —> Maybe v4) —— The REDUCE function

—> [Map k1 v1] —— Distributed input data

—> [Map k2 v4] —— Distributed output data
mapReduce parts keycode mAP cOMBINER rEDUCE
= ... —— Tobecont'd

This new function takes a list of dictionaries for the input — corresponding to the
pieces for the various map tasks, and it returns a list of dictionaries for the output —
corresponding to the reduction results from the various reduce tasks. The argument
parts defines the number of partitions for intermediate data (which equals the number
of reduce tasks R). The argument keycode defines the partitioning function on the
intermediate key domain; it is supposed to map keys to the range 1, ..., parts. The
argument cCOMBINER defines the COMBINER function for reducing intermediate
data per map task. We give it the same general type as REDUCE — modulo an ad-
ditional type distinction for the sake of generality: the result type of COMBINER
is the element type reduced by REDUCE. (The COMBINER argument is effec-
tively optional since it can be trivially defined in such a way that it passes all values to
REDUCE.) Fig. 3 illustrates the application of the new mapReduce function.

SThe source-code distribution for this paper exercises the trivial steps for splitting input and concatenating
output; cf. module MapReduce.Explicit.

24

—— For comparison, using the basic, non—parallelized mapReduce function
wordOccurrenceCount =
mapReduce mAP rEDUCE
where
mAP = const (map (flip (,) 1) . words) —— each word counts as 1
rEDUCE = const (Just . sum) —— compute sum of all counts
—— Using the parallelized mapReduce function
wordOccurrenceCount’ =
mapReduce parts keycode mAP cOMBINER rEDUCE
where
parts =42 —— number of reduce tasks
keycode = .. —— hash code for strings
mAP = const (map (flip (,) 1) . words) —— as before
cOMBINER = const (Just . sum) —— as before
rEDUCE = cOMBINER —— COMBINER and REDUCE coincide
—— A variation
wordOccurrenceCount” =
mapReduce parts keycode mAP cOMBINER rEDUCE
where
parts =1 —— no distributed reduce phase
keycode = const 1 —— no distributed reduce phase
mAP =const (map (flip (,) 1) . words) —— as before
cOMBINER = const Just —— no local reduction
rEDUCE = const (Just . sum . concat)

Figure 3: Word occurrence count — in parallel

The new mapReduce function is defined as follows:

mapReduce parts keycode mAP cOMBINER rEDUCE

map (
reducePerKey rEDUCE —— 7. Apply REDUCE to each partition
. mergeByKey) —— 6. Merge scattered intermediate data
. transpose —— 5. Transpose scattered partitions
. map (
map (
reducePerKey cOMBINER —— 4. Apply COMBINER locally
. groupByKey) —— 3. Group local intermediate data
partition parts keycode —— 2. Partition local intermediate data
. mapPerKey mAP) —— 1. Apply MAP locally to each piece

The outermost applications of list map (in bold face) correspond to the parallel map and
reduce tasks including the grouping and merging activities on local data. In between,
a transposition is performed; it models the communication between map and reduce

25

tasks at a high level of abstraction. That is, for each given logical partition, the scattered
physical contributions of the map tasks are united to form the input for the reduce task
that is responsible for the partition. (The function transpose takes a nested list of lists
where the sublists are of the same length, and transposes the list structure in the sense
of matrices in mathematics. For instance, the list [[1,2, 3], [4, 5, 6]] is transposed to
[[1,4], 2,5, 3,6]].)

The new mapReduce function relies on the same functions mapPerKey, groupByKey
and reducePerKey as before, except that we assume fop-level definitions for better
reuse this time. (Hence, all parameters are passed explicitly.) The additional use of the
COMBIN ER function implies that there are now two applications of reducePerKey —
one per map task; another per reduce task. There are two new helpers that need to be
defined:

—— Partition intermediate data
partition :: Int —> (k2 —> Int) —> [(k2,v2)] —> [[(k2,v2)]]
partition parts keycode pairs = map select keys

where

keys = [1.. parts] —— the list 1, .., parts
select part = filter pred pairs —— filter pairs by key
where

pred (k,-) = keycode k == part

—— Merge intermediate data
mergeByKey :: Ord k2 => [Map k2 v3] —> Map k2 [v3]
mergeByKey =
unionsWith (++) —— 2. Merge dictionaries
. map (mapWithKey (const singleton)) —— 1. Migrate to list type
where
singleton x = [x]

The partition function creates a nested lists, with the inner lists corresponding to the
partitions of the input. (In an actual implementation, the initial list is perhaps never
materialized, but each application of M.AP may immediately store each intermediate
key/value pair in the appropriate partition slot.) The mergeByKey function essentially
merges dictionaries by forming a list of values for each key. Clearly, merging is fun-
damentally more efficient than a general grouping operation (say, a sorting operation)
because all the incoming dictionaries for the merger are readily grouped and sorted.

4.4 Implicit parallelization for reduction

If we assume that the input data is readily stored in a distributed file system, then we
may derive the number of map tasks from the existing segmentation, thereby making
the parallelism of the map phase ‘implicit’. Let us also try to make implicit other con-
trol parameters for parallel/distributed execution. Optimal values for the number of
reduce tasks and the partitioning function for the intermediate key domain may require
problem-specific insights. In the following, we sketch a generic (and potentially sub-
optimal) method, which is based on a ‘quick scan’ over the result of the map phase and
a generic hash-code function for the key domain.

26

mapReduce mAP cOMBINER rEDUCE hash x =

map (
reducePerKey rEDUCE —— 7. Apply REDUCE to each partition
. mergeByKey) —— 6. Merge intermediates per key
$ transpose —— 5. Transpose scattered partitions
$ map (
map (
reducePerKey cOMBINER —— 4. Apply COMBINER locally
. groupByKey) —— 3. Group local intermediate data
partition parts keycode) —— 2. Fartition local intermediate data
Sy —— 1. Apply MAP locally to each piece
where

y = map (mapPerKey mAP) x
(parts,keycode) = quickScan hash y

This approach implies some synchronization costs; it assumes that all map tasks have
been completed before the number of partitions is calculated, and the intermediate
key/value pairs are associated with partitions, before, in turn, the reduce phase can be
started. Here is a concrete proposal for quickScan:

quickScan :: (Data k2, Data v2) => (k2 —> Int) —> [[(k2,v2)]] —> (Int, k2 —> Int)
quickScan hash x = (parts, keycode)

where
parts =
min maxParts —— Enforce bound
$ flip div maxSize —— Compute number of partitions
$ sum —— Combine sizes
$ map (sum . map gsize) x —— Total data parallelism for size

keycode key =
((hash key) ‘mod‘ parts) + 1

We leverage a generic size function, gsize, that is provided by Haskell’s generic pro-
gramming library Data.Generics (admittedly based on Haskell’98 extensions). This
size function implies the Data constraints for the intermediate key and value domains
in the type of quickScan. Further, this definition presumes two fixed limits maxSize,
for the maximum size of each partition, and maxParts, for a cut-off limit for the num-
ber of partitions. For simplicity, the maximum size is not used as a strict bound for
the size of partitions; it is rather used to determine the number of partitions under the
idealizing assumption of uniform distribution over the intermediate key domain. As an
aside, the definition of quickScan is given in a format that clarifies the exploitable par-
allelism. That is, sizes can be computed locally per map task, and summed up globally.
It is interesting to notice that this scheme is reminiscent of the distributed reduce phase
(without though any sort of key-based indexing).

4.5 Correctness of distribution

We speak of correct distribution if the result of distributed execution is independent
of any variables in the distribution strategy, such as numbers of map and reduce tasks,

27

and the semi-parallel schedule for task execution. Without the extra COMBINER
argument, a relatively obvious, sufficient condition for a correct distribution is this: (i)
the REDUCE function is a proper reduction, and (ii) the order of intermediate values
per key, as seen by REDUCE, is stable w.r.t. the order of the input, i.e., the order of
intermediate values for the distributed execution is the same as for the non-distributed
execution.

Instead of (ii) we may require (iii): commutativity for the reduction performed by
REDUCE. We recall that the type of REDUCE, as defined by the seminal MapReduce
paper, goes beyond reduction in a narrow sense. As far as we can tell, there is no
intuitive, sufficient condition for correct distribution once we give up on (i).

Now consider the case of an additional COMBIN ER argument. If COMBINER
and REDUCE implement the same proper reduction, then the earlier correctness con-
dition continues to apply. However, there is no point in having two arguments, if they
were always identical. If they are different, then, again, as far as we can tell, there is
no intuitive, sufficient condition for correct distribution.

As an experiment, we formalize the condition for correctness of distribution for
arbitrary COMBIN ER and REDUCE functions, while essentially generalizing (i) +
(iii). We state that the distributed reduction of any possible segmentation of any pos-
sible permutation of a list [of intermediate values must agree with the non-distributed
reduction of the list.

For all k of type k2,
for all of type [v2],
for all I’ of type [[v2]] such that concat !’ is a permutation of
REDUCE k (undusts (COMBINER k1))
= REDUCE k (concat (map (undusts . COMBINER k) 1'))
where

undusts (Just x) = [x]
undJusts Nothing = []

We contend that the formal property is (too) complicated.

5 Sawzall’s aggregators

When we reflect again on the reverse-engineered programming model in the broader
context of (parallel) data-processing, one obvious question pops up. Why would we
want to restrict ourselves to keyed input and intermediate data? For instance, consider
the computation of any sort of ‘size’ of a large data set (just as in the case of the
quick scan that was discussed above). We would want to benefit from MapReduce’s
parallelism, even for scenarios that do not involve any keys. One could argue that a
degenerated key domain may be used when no keys are needed, but there may be a
better way of abstracting from the possibility of keys. Also, MapReduce’s parallelism
for reduction relies on the intermediate key domain. Hence, one may wonder how
parallelism is to be achieved in the absence of a (non-trivial) key domain.

28

Further reflection on the reverse-engineered programming model suggests that the
model is complicated, once two arguments, REDUCE and COMBINER, are to be
understood. The model is simple enough, if both arguments implement exactly the
same function. If the two arguments differ, then the correctness criterion for distribu-
tion is not obvious enough. This unclarity only increases once we distinguish types
for intermediate and output data (and perhaps also for data used for the shake-hand
between REDUCE and COMBIN ER). Hence, one may wonder whether there is a
simpler (but still general) programming model.

Google’s domain-specific language Sawzall [26], with its key abstraction, aggrega-
tors, goes beyond MapReduce in related ways. Aggregators are described informally
in the Sawzall paper — mainly from the perspective of a language user. In this section,
we present the presumed, fundamental characteristics of aggregators.

We should not give the impression that Sawzall’s DSL power can be completely
reduced to aggregators. In fact, Sawzall provides a rich library, powerful ways of
dealing with slightly abnormal data, and other capabilities, which we skip here due to
our focus on the schemes and key abstractions for parallel data-processing.

5.1 Sawzall’s map & reduce

Sawzall’s programming model relies on concepts that are very similar to those of
MapReduce. A Sawzall program processes a record as input and emits values for ag-
gregation. For instance, the problem of aggregating the size of a set of CVS submission
records would be described as follows — using Sawzall-like notation:

proto “CVS.proto” —— Include types for CVS submission records
cvsSize : table sum of int; —— Declare an aggregator to sum up ints
record : CVS_submission = input; —— Parse input as a CVS submission

emit cvsSize < record.size; —— Aggregate the size of the submission

The important thing to note about this programming style is that one processes one
record at the time. That is, the semantics of a Sawzall program comprises the execution
of a fresh copy of the program for each record; the per-record results are emitted to a
shared aggregator. The identification of the kind of aggregator is very much like the
identification of a REDUCE function in the case of a MapReduce computation.

The relation between Sawzall and MapReduce has been described (in the Sawzall
paper) as follows [20]: “The Sawzall interpreter runs in the map phase. [...] The
Sawzall program executes once for each record of the data set. The output of this map
phase is a set of data items to be accumulated in the aggregators. The aggregators
run in the reduce phase to condense the results to the final output.” Interestingly, there
is no mentioning of keys in this explanation, which suggests that the explanation is
incomplete.

5.2 List homomorphisms

The Sawzall paper does not say so, but we contend that the essence of a Sawzall pro-
gram is to identify the characteristic arguments of a list homomorphism [4, 9, 28, 17, 8]:
a function to be mapped over the list elements as well as the monoid to be used for the

29

reduction. (A monoid is a simple algebraic structure: a set, an associative operation,
and its unit.) List homomorphisms provide a folklore tool for parallel data processing;
they are amenable to massive parallelism in a tree-like structure; element-wise mapping
is performed at the leafs, and reduction is performed at all other nodes.

In the CVS example, given above, the conversion of the generically typed input to
record (which is of the CVS submission type), composed with the computation of the
record’s size is essentially the mapping part of a list homomorphism and the declaration
of the ‘sum’ aggregator, to which we emit, identifies the monoid for the reduction part
of the list homomorphism. For comparison, let us translate the Sawzall-like code to
Haskell. We aggregate the sizes of CVS submission records in the monoid Sum — a
monoid under addition:

import CVS —— Include types for CVS submission records
import Data.Monoid —— Haskell’s library for reduction
import Data.Generics —— A module with a generic size function

cvsSize input = Sum (gsize x)
where

x 11 CvsSubmission

x = read input

Here, Sum injects an Int into the monoid under addition. It is now trivial to apply
cvsSize to a list of CVS submission records and to reduce the resulting list of sizes to
a single value (by using the associative operation of the monoid).

As an aside, Google’s Sawzall implementation uses a proprietary, generic record
format from which to recover domain-specific data by means of ‘parsing’ (as opposed
to ‘strongly typed’ input). In the above Haskell code, we approximate this overall
style by assuming String as generic representation type and invoking the normal read
operation for parsing. In subsequent Haskell snippets, we take the liberty to neglect
such type conversions, for simplicity.

Haskell’s monoids: There is the following designated type class:

class Monoid a

where

mappend :: a—>a-—>a —— An associative operation
mempty I a —— Identity of 'mappend’
mconcat :: [a] —>a —— Reduction

mconcat = foldr mappend mempty —— Default definition

The essential methods are mappend and mempty, but the class also defines an over-
loaded methods for reduction: mconcat. We note that this method, by default, is right-
associative (as opposed to left associativity as Lisp’s default). For instance, Sum, the
monoid under addition, which we used in the above example, is defined as follows:

newtype Sum a = Sum { getSum ::a }

30

—— Process a flat list

phasing, fusing :: Monoidm=> (x —>m) —> [x] —=>m
phasing f = mconcat. map f

fusing f = foldr (mappend .f) mempty

—— Process lists on many machines

phasing’, fusing’ :: Monoid m=> (x —>m) —> [[X]] => m
phasing’ f = mconcat. map (phasing f)

fusing® f = mconcat . map (fusing f)

—— Process lists on many racks of machines

phasing”, fusing” : Monoid m=> (x —>m) —> [[[X]]] => m
phasing” f = mconcat. map (phasing’f)
fusing” f = mconcat. map (fusing’ f)

Figure 4: List-homomorphisms for 0, 1 and 2 levels of parallelism

instance Num a => Monoid (Sum a)
where
mempty = Sum 0
Sum x ‘mappend‘ Sumy = Sum (x +Y)

More Haskell trivia: A newtype (read as ‘new type’) is very much like a normal data type
in Haskell (keyword data instead of newtype) — except that a new type defines exactly one
constructor (cf. the Sum on the right-hand side) with exactly one component (cf. the component
of the parametric type a). Thereby it is clear that a new type does not serve for anything but a
type distinction because it is structurally equivalent to the component type.

<&

In the case of MapReduce, reduction was specified monolithically by means of the
REDUCE function. In the case of Sawzall, reduction is specified by identifying its in-
gredients, in fact, by naming the monoid for reduction. Hence, the actual reduction can
still be composed together in different ways. That is, we can form a list homomorphism
in two ways [21, 20]:

—— Separated phases for mapping and reduction
phasing f = mconcat . map f —— first map, then reduce

—— Mapping and reduction ‘fused’
fusing f = foldr (mappend . f) mempty —— map and reduce combined

If we assume nested lists in the sense of data parallelism, then we may also form list

homomorphisms that make explicit the tree-like structure of reduction. Fig. 4 illustrates
this simple idea for 1 and 2 levels of parallelism. The first level may correspond to

31

’/a-" /\\/1;/
XxOm A 11
/0 O [0} @ T
O\ M= L\ [
13| O @moEm
OO E B | EEE
DEE @D |EEE 0
BEE BE |
2 | i
B8 EE [E [
(B O EE | (0
OED EDTEEE [
OE | O ECOEE (85
1 O EE| B8
= O BEEEE 58
DEED EBEE & (5
rackO rack

Figure 5: The above figure and the following quote is verbatim taken from [26]: “Five
racks of 50-55 working computers each, with four disks per machine. Such a configuration might
have a hundred terabytes of data to be processed, distributed across some or all of the machines.
Tremendous parallelism can be achieved by running a filtering phase independently on all 250+
machines and aggregating their emitted results over a network between them (the arcs). Solid
arcs represent data flowing from the analysis machines to the aggregators; dashed arcs represent
the aggregated data being merged, first into one file per aggregation machine and then to a single
final, collated output file.”

multiple machines; the second level may correspond to racks of machines. By now, we
cover the topology for parallelism that is assumed in the Sawzall paper; cf. Fig. 5.

We can test the Haskell transcription of the Sawzall program for summing up
the size of CVS submission records. Given inputs of the corresponding layout (cf.,
many_records, many_machines, many_racks), we aggregate sizes from the inputs by
applying the suitable list-homomorphism scheme to cvsSize:

many_records :: [String]
many_-machines :: [[String]]
many_racks = [String 1M1

test! =fusing cvsSize many_records
test2 =fusing’ cvsSize many_machines
test3 =fusing” cvsSize many_racks

An obvious question is whether Sawzall computations can be fairly characterized to be

generally based on list homomorphisms, as far as (parallel) data-processing power is
concerned. This seems to be the case, as we will substantiate in the sequel.

32

5.3 Tuple aggregators

Here is the very first code sample from the Sawzall paper (modulo cosmetic edits):

count : table sum of int; —— Aggregator: counts records
total : table sum of float; —— Aggregator: totals all records
sum_of _squares : table sum of float —— Aggregator: totals squares;

x : float = input; —— Convert input to float

emit count + 1; —— Count as 1

emit total < x; —— Add input to total

emit sum_of_squares < x * x; —— Add square of input

Conceptually, this Sawzall program performs three aggregations over the input. Of
course, for the sake of efficiency, we wish to perform only a single, actual pass over the
input. We can exploit the monoid of tuples. The so-called ‘banana split’ property of
foldr implies that the results of multiple passes coincide with the projections of a single
pass [22, 20]. Thus, the Sawzall program is translated to a Haskell program (which is,
by the way, shorter and more polymorphic) as follows:

firstSawzall x = (Sum 1, Sum x, Sum (xxx))
The monoid of triplets is readily defined (in Haskell’s library) as follows:

instance (Monoid a, Monoid b, Monoid ¢) => Monoid (a,b,c)
where
mempty = (mempty, mempty, mempty)
mappend (a1,b1,c1) (a2,b2,c2) = (mappend al a2, mappend b1 b2, mappend c1 c2)

Thus, the binary operation for tuples is defined by applying binary operations in a
component-wise manner, and the unit is just the tuple of units for the component types.
In contrast, Sawzall uses an ‘imperative’ style: first emit to count, then to fotal, etc.
This style is actually somewhat misleading because it is hard to think of a useful ex-
ploitation of ‘statement order’ within the bounds of Sawzall’s programming model.

5.4 Collection aggregators

The monoid’s type may (of course) also correspond to a collection type. For instance,
consider a monoid of sets ordered in ascending order of the element type. The Haskell
library readily covers sets and ordering, but Fig. 6 shows a simple implementation for
illustrative purposes. The only ‘public’ way of populating the type is by means of the
constructor mkAscendingSet. The monoid’s mappend operation is essentially a union
operation on (ordered) sets; it performs a merge step (in the sense of merge sort) on the
opaque list representation.

Let us assume that we want to derive a (sorted and unique) word list for a given
repository of documents. In Sawzall-like notation, this may be accomplished as follows
(assuming an aggregator form ‘table ascending set’):

33

—— Ascending sets with opaque representation
newtype Ord x => AscendingSet x =
AscendingSet { getAscendingSet :: [x] }

—— Construct a set from a list
mkAscendingSet :: Ord x => [x] —> AscendingSet x
mkAscendingSet = AscendingSet . quicksort compare

—— Sets as a monoid
instance Ord x => Monoid (AscendingSet x)
where
mempty = AscendingSet []
mappend x y = AscendingSet (merge compare (getAscendingSet x)
(getAscendingSet y))

—— A helper for merging two sorted lists

mergec [y =y

merge c X [= x

mergec XS ys case ¢ (head xs) (head ys) of
EQ —> (head xs) : merge c (tail xs) (tail ys)
LT —> (head xs) : merge c (tail xs) ys
GT —> (headys) : merge c xs (tail ys)

—— Quick sort for sets
quicksort ¢ [] =[]
quicksort ¢ (x:xs) = quicksort ¢ It ++ [x] ++ quicksort ¢ gt
where It = filter ((==) LT . flip c x) xs
gt = filter ((==) GT. flip ¢ x) xs

Figure 6: A monoid of ascending sets

wordList : table ascending set of string;
x : string = input;
for each w in x.words

emit wordList < w;

Here is a Haskell transcription:

wordList =
mkAscendingSet —— Emit words for ascending order
. words —— Split record into words

An interesting difference between the two styles is that the Sawzall-like code issues
multiple emissions (several words) per input record, whereas the Haskell code issues
one emission (a set of words). We will return to this observation in a second.

34

5.5 Indexed aggregators

The Sawzall examples so far did not involve keyed data. We recall that the MapReduce
model makes a point about keyed data. One can easily model the typical MapReduce
example in Sawzall by means of indexed aggregators. Let us revisit the problem of
counting occurrences of words, which we used earlier to illustrate MapReduce. Words
serve as index values for the purpose of a Sawzall encoding — just as much as the
representation type for words (i.e., strings) served as ‘key domain’ for MapReduce.
Thus, in Sawzall-like notation (using square brackets for indexing):

wordOccurrenceCount : table sum[word: string] of int;

x : string = input;

for each w in x.words

emit wordOccurrenceCount[w] + 1;

Here is a Haskell transcription:

wordOccurrenceCount =
mkindexedBy —— Combines counts
. map (flip (,) (Sum (1::Int))) —— Count each word as 1
. words —— Split record into words

Hence, each record is mapped to a list of string/int pairs, which is then turned into a
sort of dictionary; cf. mkindexedBy. The type Map of the Data.Map module is almost
appropriate. In fact, the type readily implements the Monoid interface, but in a way that
is inappropriate for our purposes.

instance Ord k => Monoid (Map k v)

where

mempty = empty

mappend = union —— left—biased union
mconcat = unions —— left—associative fold

This instance does not assume the value type of the dictionary to be a monoidal type.
We want the associative operation of the ‘inner’ monoid to be applied when dictionaries
are combined. Hence, we define a new type, IndexedBy, that serves for nothing but a
type distinction that allows us to vary the monoid instance for indexed aggregators:

newtype (Ord k, Monoid v) => IndexedBy k v
= IndexedBy { getMap :: Map kv }

Here is the constructor that we used in the sample code:

mkindexedBy :: (Ord k, Monoid v) => [(k,v)] —> IndexedBy k v
mkIindexedBy = IndexedBy . fromListWith mappend

The Monoid instance uses unionWith mappend instead of union:

35

instance (Ord k, Monoid v) => Monoid (IndexedBy k v)
where
mempty = IndexedBy mempty
mappend (IndexedBy f) (IndexedBy g) = IndexedBy (unionWith mappend f g)

5.6 Generalized monoids

The two previous examples (for word lists and word-occurrence counting) exemplified
differences between Sawzall and Haskell style — regarding the granularity and the
typing of ‘emissions’:

e The strict, monoidal Haskell style only admits one emission per input record,
whereas the free-wheeling Sawzall style admits any number of emissions.

e The strict, monoidal Haskell style requires emissions to be of the monoid’s type,
whereas the free-wheeling Sawzall style covers a special case for collection-like
aggregators. That is, an emission can be of the element type.

These differences do not affect expressiveness in a formal sense, as we have clarified
by the transcription of the examples. However, the differences may negatively affect
the convenience of the Haskell style, and also challenge an efficient implementation of
certain aggregators.

A simple extension of the Monoid interface comes to rescue. Essentially, we need to
model ‘emissions to aggregators’. We define a new type class Aggregator as a subclass
of Monoid for this purpose. The Aggregator type class comes with two designated type
parameters, one for the underlying monoid, another for the emission type; there is a
method minsert for insertion (say, emission):

class Monoid m => Aggregatorem |e —>m
where
minsert :: e —>m —>m
—— m, the monoid’s type
—— ¢, for the type of ‘elements’ to be inserted .

There is also a so-called functional dependency e —> m, which states that an emission
type determines the aggregator type. This implies programming convenience because
the aggregator type can be therefore ‘inferred’. (Multi-parameter type classes with
functional dependencies go beyond Haskell 98, but they are well understood [31], well
implemented and widely used.)

In the case of non-collection-like aggregators, e equals m, and minsert equals
mappend. In the case of collection-like aggregators, we designate a new type to emis-
sions, and map minsert to a suitable ‘insert’ operation of the collection type at hand.
Fig. 7 instantiates the Aggregator type class for a few monoids. The schemes for list
homomorphisms (say, one machine vs. many machines vs. multiple racks) are easily
generalized. Separation of mapping and reduction is not meaningful for this general-
ization; only the more efficient, fused form is admitted by the type of minsert. Thus:

36

—— Trivial instance for monoid under addition
instance Num x => Aggregator (Sum x) (Sum x)
where

minsert = mappend

—— Emission type for AscendingSet
newtype Ord x => AscendingSetElement x =
AscendingSetElement { getAscendingSetElement :: x }

—— Generalized monoid: AscendingSet
instance Ord x => Aggregator (AscendingSetElement x) (AscendingSet x)
where
minsert x = AscendingSet
insert compare (getAscendingSetElement x)

getAscendingSet
—— Helper for inserting an element into a sorted set
insert ¢ x [= [x]
insert ¢ x ys = case ¢ x (head ys) of
EQ —> x : (tail ys)
LT —>x 1 ys

GT —> (headys) : insert ¢ x (tail ys)

—— Emission type for IndexedBy
data (Ord k, Monoid v) => KeyValuePair k v = KeyValuePair k v

—— Generalized monoid: IndexedBy
instance (Ord k, Monoid v) => Aggregator (KeyValuePair k v) (IndexedBy k v)
where
minsert (KeyValuePair k v) (IndexedBy f) =
IndexedBy $ insertWith mappend k v f

Figure 7: llustrative Aggregator instances

—— Process a flat list
inserting :: Aggregatore m=> (x —>e) —> [x] —>m
inserting f = foldr (minsert. f) mempty

—— Process lists on many machines
inserting’ :: Aggregatorem=> (x —>¢€) —>[[x]] —> m
inserting’ f = mconcat . map (inserting f)

—— Process lists on many racks of machines

inserting ” :: Aggregatorem=> (X —>e) —> [[[X]]] => m
inserting ” f = mconcat . map (inserting’ f)

37

The emission type is more flexible now, but we still need to admit multiple emissions
per input record (other than by explicitly invoking reduction). Strong static typing
(of Haskell) implies that we must differentiate single vs. multiple emissions somehow
explicitly. In fact, the Aggregator type class allows us to admit lists of emissions as
an additional emission type for any aggregator. To this end, we designate an emission
type constructor, Group, as follows:

newtype Group e =
Group { getGroup :: [e] }

instance Aggregator e m => Aggregator (Group €) m
where
minsert es = minsertList $ getGroup es
where
minsertList = flip $ foldr minsert

Hence, multiple emissions are grouped as a single emission, and during insert, they
are ‘executed’ one by one; cf. the definition of the function minsertList. With this
machinery in place, we can revise the examples for word lists and word-occurrence
counting such that multiple words or key/value pairs are emitted, without any local
reduction.

wordList =
Group —— Group emissions per record
. map AscendingSetElement —— Emit words for ascending order
. words —— Split record into words
wordOccurrenceCount =
Group —— Group emissions per record
. map (flip KeyValuePair (Sum (1::Int))) —— Count each word as 1
. words —— Split record into words

Essentially, the expression of grouping in the Haskell code is the declarative counter-
part for the imperative for-each loop in MapReduce or Sawzall style.

5.7 Multi-set aggregators

Let us attempt another simplification for the special case of indexed aggregation with
counting. We contend that the assembly of key/value pairs, as shown so far, is tedious;
we needed to couple up elements with the trivial count 1. Instead we may model this
problem by means of an aggregator for multi-sets. Thus:

wordOccurrenceCount =
Group —— Group emissions per record
. map MultiSetElement —— Add each word to a multi —set
. words —— Split record into words

38

We can trivially implement multi-set aggregators in terms of indexed aggregators on
a monoid for addition. In fact, we do not even need a new aggregator type. In-
stead, we only introduce a new emission type MultiSetElement for the existing monoid
IndexedBy.

—— Emission type for multi sets
newtype Ord k => MultiSetElement k =
MultiSetElement { getMultiSetElement :: k }

—— Multi—set aggregation in terms of indexed aggregation
instance Ord k => Aggregator (MultiSetElement k) (IndexedBy k (Sum Int))
where

minsert k = minsert (KeyValuePair (getMultiSetElement k) (Sum 1))

5.8 Correctness of distribution

Compared to MapReduce (cf. Sec. 4.5), the situation is much simpler and well under-
stood because of the existing foundations for list homomorphisms. The computation
result is independent of the actual data distribution over machines and racks. That
is, associativity of the monoid’s binary operation suffices to imply correctness for the
staged reduction at the machine level, followed by the rack level, followed by the global
level — as long as sub-reductions are composed in the order of the input, or a commu-
tative monoid must be used.

It remains to clarify generalized monoids in algebraic terms. The insert operation
must be such that it could also be used to turn an emission into a value of the monoid’s
type so that the basic monoidal scheme of list homomorphisms is sufficient. Thus:

minsert e m = minsert e mempty ‘mappend' m

5.9 Sawzall vs. MapReduce

Let us try to understand the precise relationship between MapReduce and Sawzall. In
doing so, we use the archetypal problem of counting occurrences of words for inspira-
tion, as before.

The MapReduce implementation of [10] distributes the reduce phase by means
of partitioning the intermediate key domain; recall Fig. 2. We face an ‘any-to-any’
connectivity network between MapReduce’s map and reduce tasks. That is, each single
map task may compute intermediate data for all the different reduce tasks.

In contrast, the Sawzall implementation of [26] distributes reduction (aggregation)
in a hierarchical (network-topology-based manner): reduction per machine, followed
by reduction per rack, followed by final, global reduction; cf. Fig. 5. Communication
is hence organized in tree-like shape, as opposed to ‘any-to-any’.

Hence the implementation of Sawzall, as described in [26], cannot possibly be
based on the implementation of MapReduce, as described in [10], despite the fact that
the Sawzall paper seems to say so. Presumably, Google uses several, fundamentally

39

different implementations of MapReduce (and Sawzall). The distribution model pub-
lished for Sawzall is both simpler and more general than the one published for MapRe-
duce. Monoidal reduction (fused with mapping) organized in tree-like shape does not
take any dependency on the potentially keyed status of the monoid’s type. The pub-
lished model for MapReduce is biased towards the monoid for indexed aggregation.

A remaining question may be whether the kind of data-structural knowledge of a
MapReduce implementation can be re-casted to a Sawzall implementation. In partic-
ular, consider the treatment of grouping by MapReduce, where map workers perform
grouping locally and reduce workers perform merging. We contend that implementa-
tions of monoids may model such distribution details (without breaking the abstraction
of monoids though). In fact, the generalized monoid IndexedBy, as it was shown ear-
lier, in combination with the scheme for parallel list homomorphisms, is exactly set up
to perform a kind of a parallel-merge-all strategy [11]. As a consequence, we also do
not see the need for the complicated distinction of REDUCE and COMBINER — as
assumed by the MapReduce implementations.

6 Conclusion

MapReduce and Sawzall must be regarded as an impressive testament to the power of
functional programming — to list processing in particular. Google has fully unleashed
the power of list homomorphisms and friends for massive, simple and robust parallel
programming. The original formulations of the models for MapReduce and Sawzall
slightly confuse and hide some of the underlying concepts, which is where the present
paper aims to contribute. Our analysis of Google’s publications may help with a deeper
understanding of the ramifications of Google’s results.

We have systematically used the typed functional programming language Haskell
for the discovery of a rigorous description of the MapReduce programming model and
its advancement as the domain-specific language Sawzall. As a side effect, we deliver a
relatively general illustration for the utility of functional programming in a semi-formal
approach to design with excellent support for executable specification. This illustration
may motivate others to deploy functional programming for their future projects, be in
the context of distributed computing, data processing, or elsewhere.

The following capabilities of functional programming are instrumental in the pro-
cess of software design: strong type checking, full type inference, powerful abstraction
forms, compositionality, and algebraic reasoning style. This insight has been described
more appropriately by Hughes, Thompson, and surely others [19, 33].

Acknowledgments: 1 would like to acknowledge feedback I received through pre-
sentations on the subject: University of Innsbruck (January 2006), University of Not-
tingham (January 2006), University of Rice in Texas (July 2006), University of Ne-
braska at Omaha (April 2007), and Physikzentrum Bad Honnef (May 2007).

40

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

L. Augusteijn. Sorting morphisms. In S. Swierstra, P. Henriques, and J. Oliveira, editors,
3rd International Summer School on Advanced Functional Program ming, volume 1608 of
LNCS, pages 1-27. Springer-Verlag, Sept. 1998.

J. W. Backus. Can Programming Be Liberated From the von Neumann Style? A Functional
Style and its Algebra of Programs. Communications of the ACM, 21(8):613-641, 1978.

R. Bird and O. de Moor. Algebra of programming. Prentice-Hall, Inc., 1996.

R. S. Bird. An introduction to the theory of lists. In Proceedings of the NATO Ad-
vanced Study Institute on Logic of programming and calculi of discrete design, pages 5—42.
Springer-Verlag, 1987.

G. E. Blelloch. Programming parallel algorithms. Communications of the ACM, 39(3):85—
97, 1996.

A. Borodin and J. E. Hopcroft. Routing, merging and sorting on parallel models of com-
putation. In STOC’82: Proceedings of the fourteenth annual ACM symposium on Theory
of computing, pages 338-344. ACM Press, 1982.

L. Bougé, P. Fraigniaud, A. Mignotte, and Y. Robert, editors. Proceedings of the 2nd Inter-
national Euro-Par Conference on Parallel Processing, 2 volumes, EURO-PAR’96, volume
1123-1124 of LNCS. Springer-Verlag, 1996.

W.-N. Chin, J. Darlington, and Y. Guo. Parallelizing conditional recurrences. In Bougé
et al. [7], pages 579-586. Volume 1/2.

M. Cole. Parallel Programming with List Homomorphisms. Parallel Processing Letters,
5:191-203, 1995.

J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. In
OSDI’04, 6th Symposium on Operating Systems Design and Implementation, Sponsored by
USENIX, in cooperation with ACM SIGOPS, pages 137-150, 2004.

D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H.-I. Hsiao, and R. Ras-
mussen. The Gamma Database Machine Project. IEEE Transactions on Knowledge and
Data Engineering, 2(1):44-62, 1990.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison Wesley, 1995.
S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. In /9th ACM Sympo-
sium on Operating Systems Principles, Proceedings, pages 29-43. ACM Press, 2003.

J. Gibbons. A pointless derivation of radix sort. Journal of Functional Programming,
9(3):339-346, 1999.

J. Gibbons. Calculating Functional Programs. In R. C. Backhouse, R. L. Crole, and J. Gib-
bons, editors, Algebraic and Coalgebraic Methods in the Mathematics of Program Con-
struction, International Summer School and Workshop, Oxford, UK, April 10-14, 2000,
Revised Lectures, volume 2297 of LNCS, pages 149-202. Springer-Verlag, 2002.

J. Gibbons and G. Jones. The under-appreciated unfold. In ICFP ’98: Proceedings of the
third ACM SIGPLAN International Conference on Functional Programming, pages 273—
279. ACM Press, 1998.

S. Gorlatch. Systematic efficient parallelization of scan and other list homomorphisms. In
Bougé et al. [7], pages 401—408. Volume 2/2.

D. Hirschberg. Fast parallel sorting algorithms. Communications of the ACM, 21(8):657—
661, 1978.

41

[19]

[20]

(21]

(22]
(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]
[31]

[32]

[33]

J. Hughes. Why Functional Programming Matters. The Computer Journal, 32(2):98-107,
1989.

G. Hutton. A tutorial on the universality and expressiveness of fold. Journal of Functional
Programming, 9(4):355-372, 1999.

G. Malcolm. Algebraic Data Types and Program Transformation. PhD thesis, Groningen
University, 1990.

E. Meijer. Calculating compilers. PhD thesis, Nijmegen University, 1992.

E. Meijer, M. Fokkinga, and R. Paterson. Functional Programming with Bananas, Lenses,
Envelopes and Barbed Wire. In J. Hughes, editor, Proceedings of 5th ACM Conference on
Functional Programming Languages and Computer Architecture, FPCA’91, volume 523
of LNCS, pages 124—144. Springer-Verlag, 1991.

S. Peyton Jones, editor. Haskell 98 Language and Libraries — The Revised Report. Cam-
bridge University Press, Cambridge, England, 2003.

S. Peyton Jones and M. Shields. Lexically scoped type variables, Mar. 2004.
Available at http://research.microsoft.com/Users/simonpj/papers/
scoped-tyvars/.

R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the data: Parallel analysis
with Sawzall. Scientific Programming, 14, Sept. 2006. Special Issue: Dynamic Grids and
Worldwide Computing.

D. B. Skillicorn. Architecture-independent parallel computation. IEEE Computer,
23(12):38-50, 1990.

D. B. Skillicorn. Foundations of Parallel Programming. Number 6 in Cambridge Series in
Parallel Computation. Cambridge University Press, 1994.

D. B. Skillicorn and D. Talia. Models and languages for parallel computation. ACM Com-
puting Surveys, 30(2):123-169, 1998.

G. L. Steele, Jr. Common Lisp: the language. Digital Press, second edition, 1990.

P. J. Stuckey and M. Sulzmann. A theory of overloading. ACM TOPLAS, 27(6):1216-1269,
2005.

D. Taniar and J. W. Rahayu. Parallel database sorting. Information Sciences and Applica-
tions: An International Journal, 146(1-4):171-219, 2002.

S. Thompson. The Craft of Functional Programming. Addison Wesley, 1996. 2nd edition
in 1999.

42

http://research.microsoft.com/Users/simonpj/papers/scoped-tyvars/
http://research.microsoft.com/Users/simonpj/papers/scoped-tyvars/

