
Annotated bibliography for the tutorial on
“Exploring typed language design in Haskell”∗

Oleg Kiselyov1 and Ralf Lämmel2

1 Fleet Numerical Meteorology and Oceanography Center, Monterey, CA

2 Universität Koblenz-Landau, Software Languages Team, Koblenz, Germany

Draft as of January 13, 2010

Abstract

The tutorial is primarily based on our publication [11] and the
OOHaskell draft [10]. The introductory lecture (on the Expression
Problem & Co.) also leverages our publication [14]. Besides, the tuto-
rial takes advantage of and relates to the rich literature on type-level
programming (mostly in Haskell), object encoding and OO program-
ming support in functional programming (again, mostly in Haskell,
but also see the mentioning of OCaml and ML-ART), and several
other subjects of programming-language research, e.g., the Expres-
sion Problem, and record calculi.

References

[1] G. Bracha and G. Lindstrom. Modularity Meets Inheritance. In Pro-
ceedings: 4th International Conference on Computer Languages, pages
282–290. IEEE Computer Society Press, 1992. Available online.

∗This text is under construction. We are more than happy to add entries. In fact, we
are aware of much more related work (see [10, 11]), but help with adding entries is most
welcome. Please send us an email, perhaps even with a proposal for a comment to be
included in this annotated bibliography.

1

http://www.uni-koblenz.de/~laemmel/TheEagle/dl/BrachaL92.pdf


The paper presents an advanced record calculus. It actually
separates a number of roles otherwise readily merged in actual
OO programming languages, and thereby allows for a design-
space exploration. For instance, basic record operations, in-
heritance, and mixins are covered. Our work on heterogenous
collections, extensible records, and OOHaskell [11, 10] relates
to this line of work in so far that it shows how such calculi and
their applications can be readily explored (in fact, embedded)
in Haskell—based on type-level programming.

[2] Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones.
Associated type synonyms. In ICFP ’05: Proceedings of the tenth ACM
SIGPLAN international conference on Functional programming, pages
241–253. ACM, 2005. Available online.

The paper describes a form of indexed type families (see [3]
for a companion paper). Type families are a more recent ex-
tension to Haskell that provides an alternative to functional
dependencies for multi-parameter type classes. In the tutorial,
we discuss all alternatives.

[3] Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones, and
Simon Marlow. Associated types with class. In POPL ’05: Proceed-
ings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 1–13. ACM, 2005. Available online.

The paper describes a form of indexed type families (see [2]
for a companion paper). Type families are a more recent ex-
tension to Haskell that provides an alternative to functional
dependencies for multi-parameter type classes. In the tutorial,
we discuss all alternatives.

[4] Sigbjorn Finne, Daan Leijen, Erik Meijer, and Simon Peyton Jones.
Calling hell from heaven and heaven from hell. In ICFP ’99: Proceedings
of the fourth ACM SIGPLAN international conference on Functional
programming, pages 114–125. ACM, 1999. Available online.

[5] Matthew Fluet and Riccardo Pucella. Phantom types and subtyping.
Journal of Functional Programming, 16(6):751–791, 2006. Available on-
line.

2

http://www.uni-koblenz.de/~laemmel/TheEagle/dl/ChakravartyKPJ05.pdf
http://www.uni-koblenz.de/~laemmel/TheEagle/dl/ChakravartyKPJM05.pdf
http://www.uni-koblenz.de/~laemmel/TheEagle/dl/FinneLMPJ99.pdf
http://www.uni-koblenz.de/~laemmel/TheEagle/dl/FluetP06.pdf
http://www.uni-koblenz.de/~laemmel/TheEagle/dl/FluetP06.pdf


The paper investigates the established technique of phantom
types in depth in the context of subtyping. It shows that such
phantom types can be used to model subtyping hierarchies.

[6] B.R. Gaster and M.P. Jones. A Polymorphic Type System for Extensible
Records and Variants. Technical report NOTTCS-TR-96-3, University
of Nottingham, Department of Computer Science, 1996. Available on-
line.

This is a seminal reference in so far that it describes a type-
system extension for Haskell that covers extensible records and
that has been actually implemented and also used relatively
well. Our tutorial (and [11] for that matter) demonstrates how
the expressivity (including the aspects of static typing specif-
ically) of extensible records and other related concepts can be
achieved by type-level programming.

[7] T. Hallgren. Fun with functional dependencies. In Joint Winter Meet-
ing of the Departments of Science and Computer Engineering, Chalmers
University of Technology and Goteborg University, Varberg, Sweden,
Jan. 2001, 2001. Available online.

Just like [18], this paper is a seminal reference on type-level
programming in Haskell. Various, by now classical examples
or idioms of type class-based programming appear in the pa-
per. The development is specifically based on the point of
view that such type class-based programming enables compile-
time computations, and hence triggers a separation of static
and dynamic computations. This view is similar to the one
of metaprogramming in the context of C++ and its template
system.

[8] J. Hughes and J. Sparud. Haskell++: An Object-Oriented Extension
of Haskell. In Proc. of Haskell Workshop, La Jolla, California, YALE
Research Report DCS/RR-1075, 1995.

[9] Didier Rémy Jérôme Vouillon and Jacques Garrigue. The Objective
Caml system, release 3.10, Documentation and user’s manual, Chapter
3. Objects in Caml, 16 May 2007. http://caml.inria.fr/pub/docs/

manual-ocaml/index.html.

3

http://www.uni-koblenz.de/~laemmel/TheEagle/dl/GasterJ96.pdf
http://www.uni-koblenz.de/~laemmel/TheEagle/dl/GasterJ96.pdf
http://www.uni-koblenz.de/~laemmel/TheEagle/dl/Hallgren01.pdf
http://caml.inria.fr/pub/docs/manual-ocaml/index.html
http://caml.inria.fr/pub/docs/manual-ocaml/index.html


Part of the OOHaskell [10] effort was focused at the question
whether we can achive OCaml’s expressivity in Haskell by
means of an appropriate extensible record system and other
idioms of type-level programming. We have, in fact, covered
nearly all the (principled) examples from the OCaml manual
in the code distribution of OOHaskell.

[10] Oleg Kiselyov and Ralf Lämmel. Haskell’s overlooked object system.
Available online, 2005.

The paper is the backbone of the tutorial. The paper shows
that the basic tenet of OO and quite advanced expressivity
(especially in terms of type-system variations) can be mod-
elled in Haskell—starting from a powerful record calculus.

[11] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed het-
erogeneous collections. In Haskell ’04: Proceedings of the 2004 ACM
SIGPLAN workshop on Haskell, pages 96–107. ACM, 2004. Available
online.

The paper advances type-level programming in Haskell based
on type classes and functional dependencies. That is, the pa-
per provides types for the programming domain of heteroge-
nous collections, and it shows the usefulness of this develop-
ment for supporting type-safe database access and providing
an extensible record system.

[12] Oleg Kiselyov and Chung-chieh Shan. Functional pearl: implicit
configurations–or, type classes reflect the values of types. In Haskell ’04:
Proceedings of the 2004 ACM SIGPLAN workshop on Haskell, pages 33–
44. ACM, 2004. Available online.

The paper addresses the configurations problem, i.e., the prob-
lem of propagating run-time preferences through the program.
To this end, it contributes a type-level programming tech-
nique which proopagates configurations type-safely through
type-level reifications. Part of this technique is a simulation
of coherent, local type-class instances.

4

http://www.uni-koblenz.de/~laemmel/TheEagle/
http://www.uni-koblenz.de/~laemmel/TheEagle/dl/KiselyovLS04.pdf
http://www.uni-koblenz.de/~laemmel/TheEagle/dl/KiselyovLS04.pdf
http://www.uni-koblenz.de/~laemmel/TheEagle/dl/KiselyovS04.pdf


[13] Oleg Kiselyov, Ken Shan, and Simon Peyton Jones. Fun With Type
Functions, 2009. Draft. Available online.

The paper provides a more recent and application-oriented
discussion of type-level programming in Haskell. The paper
specifically discusses the more recent language constructs for
type-level programming with type functions based on (in-
dexed) type families. Various applications of type-level pro-
gramming are sketched, e.g., memoization and session types.

[14] Ralf Lämmel and Klaus Ostermann. Software extension and integra-
tion with type classes. In GPCE ’06: Proceedings of the 5th interna-
tional conference on Generative programming and component engineer-
ing, pages 161–170. ACM, 2006. Available online.

The paper (like so many others, see, e.g., [28, 30]) discusses
the Expression Problem, and other extensibility or software
integration problems. The specific contribution of the paper is
to clarify the capabilities of Haskell’s type classes in addressing
these various problems.

[15] Daan Leijen. Extensible records with scoped labels. In Proceedings of
the 2005 Symposium on Trends in Functional Programming (TFP’05),
September 2005.

[16] Daan Leijen and Erik Meijer. Domain specific embedded compilers.
In PLAN ’99: Proceedings of the 2nd conference on Domain-specific
languages, pages 109–122. ACM, 1999. Available online.

This is a seminal reference on language embedding. Like many
other papers of that tradition, domain-specific languages are
modelled as combinator libraries, i.e., suites of higher-order
functions. The approach is particularly interesting for our
type-level and functional OO programming endeavour because
it uses extensible records, phantom types and various forms
of polymorphism for the embedding. We see type-level pro-
gramming as the natural next step to achieve even more pro-
grammability in language embedding.

5

http://www.uni-koblenz.de/~laemmel/TheEagle/dl/KiselyovSPJ09.pdf
http://www.uni-koblenz.de/~laemmel/TheEagle/dl/LaemmelO06.pdf
http://www.uni-koblenz.de/~laemmel/TheEagle/dl/LeijenM99.pdf


[17] Andres Löh and Ralf Hinze. Open data types and open functions. In
PPDP ’06: Proceedings of the 8th ACM SIGPLAN international con-
ference on Principles and practice of declarative programming, pages
133–144. ACM, 2006. Available online.

[18] C. McBride. Faking It (Simulating Dependent Types in Haskell). Jour-
nal of Functional Programming, 12(4–5):375–392, July 2002. Available
online.

The paper is a seminal reference on type-level programming in
Haskell. It is profound in so far that it relates such type-class
programming to dependent typing. The paper is also most
clear in so far that it clarifies the nature of type class-based
type-level programming in Haskell—i.e., the use of counter-
feits of type-level copies of data. See [7] for another similar
development conveived about the same time.

[19] E. Meijer and K. Claessen. The Design and Implementation of Mon-
drian. In ACM SIGPLAN Haskell Workshop. ACM Press, June 1997.
Available online.

Mondrian is a simple Haskell dialect with an object-oriented
flavour. To this end, algebraic datatypes and type classes
are combined into a simple object-oriented type system
with no real subtyping, with completely co-variant type-
checking. Such a simple OO type system can be explored in
OOHaskell [10] just as much as more as other forms of OO
types.

[20] M. Neubauer, P. Thiemann, M. Gasbichler, and M. Sperber. A Func-
tional Notation for Functional Dependencies. In Proc. 2001 ACM SIG-
PLAN Haskell Workshop, Firenze, Italy, September 2001, pages 101–
120, 2001. Available online.

The paper shows an early example of type-level program-
ming with Haskell’s type classes, and it also discusses different
styles such as the inherent logic programming style suggested
by multi-parameter type-classes with functional dependencies
and a conceivable, more functional notation. A number of by
now classical examples occur in the paper.

6

http://www.uni-koblenz.de/~laemmel/TheEagle/dl/LoehH06.pdf
http://www.uni-koblenz.de/~laemmel/TheEagle/dl/McBride02.pdf
http://www.uni-koblenz.de/~laemmel/TheEagle/dl/McBride02.pdf
http://www.uni-koblenz.de/~laemmel/TheEagle/dl/MeijerC97.pdf
http://www.uni-koblenz.de/~laemmel/TheEagle/dl/NeubauerTGS01.pdf


[21] Matthias Neubauer, Peter Thiemann, Martin Gasbichler, and Michael
Sperber. Functional logic overloading. In POPL ’02: Proceedings of the
29th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 233–244. ACM, 2002. Available online.

The paper shows an early example of type-level programming
with Haskell’s type classes, and it also proposes an extension
for the support of different evaluation strategies. See [20] for
a companion paper.

[22] J. Nordlander. Polymorphic subtyping in O’Haskell. Science of Com-
puter Programming, 43(2–3):93–127, 2002. Also in the Proceedings of
the APPSEM Workshop on Subtyping and Dependent Types in Pro-
gramming, Ponte de Lima, Portugal, 2000. Available online.

The paper develops an extension of Haskell, O’Haskell, to en-
able a form of subtyping inspired by OO programming. Such
subtyping can be simulated by OOHaskell [10] and various
forms of subtyping can be explored (with regard to variance,
inheritance, depth of subtyping etc.).

[23] A.T.H. Pang and M.M.T. Chakravarty. Interfacing Haskell with Object-
Oriented Languages. In P.W. Trinder and G. Michaelson and R. Pena,
editor, Implementation of Functional Languages, 15th International
Workshop, IFL 2003, Edinburgh, UK, September 8-11, 2003, Revised
Papers, volume 3145 of LNCS, pages 20–35. Springer, 2004. Available
online.

The paper addresses interfacing of OO languages with Haskell.
The paper uses multi-parameter type classes in this context.
See [27] for a similar paper.

[24] D. Rémy. Programming Objects with ML-ART: An extension to ML
with Abstract and Record Types. In M. Hagiya and J.C. Mitchell,
editors, International Symposium on Theoretical Aspects of Computer
Software, number 789 in LNCS, pages 321–346. Springer, 1994. Available
online.

ML-ART provides the foundation to the design of OCaml,
specifically its type system with object and subtyping capa-
bilities. Our development of OOHaskell can be insightfully

7

http://www.uni-koblenz.de/~laemmel/TheEagle/dl/NeubauerTGS02.pdf
http://www.uni-koblenz.de/~laemmel/TheEagle/dl/Nordlander02.pdf
http://www.uni-koblenz.de/~laemmel/TheEagle/dl/PangC04.pdf
http://www.uni-koblenz.de/~laemmel/TheEagle/dl/PangC04.pdf
http://www.uni-koblenz.de/~laemmel/TheEagle/dl/Remy94.pdf
http://www.uni-koblenz.de/~laemmel/TheEagle/dl/Remy94.pdf


compared with ML-ART. While the expressivity of the final
language frameworks is very similar, the underlying expressiv-
ity differs in important ways. For instance, ML-ART relies on
row polymorphism whereas OOHaskell leverages type func-
tions based on multi-parameter type classes and functional
dependencies.

[25] Tim Sheard and Simon Peyton Jones. Template meta-programming for
haskell. SIGPLAN Not., 37(12):60–75, 2002. Available online.

Template Haskell supports a form of meta-programming based
on program templates, program ASTs, and compile-time com-
putations over those entities. Such meta-programming is or-
thogonal to type-level programming with type classes, and the
applications are largely complementary. That is, while type-
level programming serves extra typing, meta-programming
serves code generation and transformation.

[26] Mark Shields and Erik Meijer. Type-indexed rows. In POPL ’01: Pro-
ceedings of the 28th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 261–275. ACM, 2001. Available online.

The paper develops a type system for type-indexed types (type
constructors) such as type-indexed products (relevant, for ex-
ample, in XML programming), and the dual concept of type-
indexed co-products. The tutorial shows (based on [11] and
so far unpublished experiments) that such types can be simu-
lated in Haskell (in a number of ways) by means of type-level
programming in Haskell.

[27] Mark Shields and Simon L. Peyton Jones. Object-Oriented Style Over-
loading for Haskell. ENTCS, 59(1), 2001. Available online.

The paper describes the mapping of classes (interfaces) and
subtyping hierarchies from a language like C# to Haskell. On
the side of Haskell, type classes are used. The motivation
for the mapping is specifically to enable a foreign-language
interface—such as calling an OO library from within Haskell.
A general object encoding and full subtyping for objects is not
addressed. See [23] for a similar paper.

8

http://www.uni-koblenz.de/~laemmel/TheEagle/dl/SheardPJ02.pdf
http://www.uni-koblenz.de/~laemmel/TheEagle/dl/ShieldsM01.pdf
http://www.uni-koblenz.de/~laemmel/TheEagle/dl/ShieldsPJ01.pdf


[28] Mads Torgersen. The Expression Problem Revisited. In ECOOP 2004
- Object-Oriented Programming, 18th European Conference, Oslo, Nor-
way, June 14-18, 2004, Proceedings, volume 3086 of LNCS, pages 123–
143. Springer, 2004. Available online.

The paper describes a number of solutions (“encodings”) of
the Expression Problem in Java or C# with generics avail-
able. It also discusses criteria for assessing solution proposals
for the Expression Problem. As shown in [14], type-level pro-
gramming in Haskell can also solve the Expression Problem,
and it is insightful to compare the Java/C# solutions with
the Haskell approach.

[29] Philip Wadler. The expression problem. Message to java-genericity
electronic mailing list, November 1998. Available online at http://

www.daimi.au.dk/~madst/tool/papers/expression.txt.

[30] Alessandro Warth, Milan Stanojević, and Todd Millstein. Statically
scoped object adaptation with expanders. In OOPSLA ’06: Proceed-
ings of the 21st annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications, pages 37–56. ACM,
2006. Available online.

The paper addresses software extensibility in an OO context.
It proposes a simple but powerful extension technique, which
can also be used to solve the Expression Problem. There
are arguably no elements of type-level programming in this
work, but it provides a good baseline for work on extensibility
problems—be it in Haskell or otherwise.

[31] Stefan Wehr, Ralf Lämmel, and Peter Thiemann. Javagi : Generalized
interfaces for java. In ECOOP 2007 - Object-Oriented Programming,
21st European Conference, Berlin, Germany, July 30 - August 3, 2007,
Proceedings, volume 4609 of Lecture Notes in Computer Science, pages
347–372. Springer, 2007. Available online.

Inspired by Haskell’s type classes, the paper generalizes Java-
like interfaces to achieve much of the type-class expressivity in
an OO programming context. Type-level programming style
is less of an issue in the paper, also because the approach is

9

http://www.uni-koblenz.de/~laemmel/TheEagle/dl/Torgersen04.pdf
http://www.daimi.au.dk/~madst/tool/papers/expression.txt
http://www.daimi.au.dk/~madst/tool/papers/expression.txt
http://www.uni-koblenz.de/~laemmel/TheEagle/dl/WarthSM06.pdf
http://www.uni-koblenz.de/~laemmel/TheEagle/dl/WehrLT07.pdf


limited to single-parameter type classes. The generalized in-
terfaces are however sufficient to address the Expression Prob-
lem.

10


