
Fun with type functions

Version 2

Oleg Kiselyov Simon Peyton Jones Chung-chieh Shan

July 2, 2009

Tony Hoare has always been a leader in writing down and proving properties
of programs. To prove properties of programs automatically, the most widely
used technology today is by far the ubiquitous type checker. Alas, static type
systems inevitably exclude some good programs and allow some bad ones. This
dilemma motivates us to describe some fun we’ve been having with Haskell, by
making the type system more expressive without losing the benefits of automatic
proof and compact expression.

Haskell’s type system extends Hindley-Milner with two distinctive features:
polymorphism over type constructors and overloading using type classes. These
features have become integral to Haskell, and they are widely used and appreci-
ated [29]. More recently, Haskell has been enriched with type families [6, 7, 43],
which allows functions on types to be expressed as straightforwardly as functions
on values. This facility makes it easier for programmers to effectively extend
the compiler by writing functional programs that execute during type-checking.

This paper gives a programmer’s tour of type families as they are supported
in GHC today.

This is the second major iteration of our paper. We warmly encourage feed-
back on this draft, prior to publication. Please add comments to the Wiki page
at http: // haskell. org/ haskellwiki/ Simonpj/ Talk: FunWithTypeFuns .

1

1 Introduction

The type of a function specifies (partially) what it does. Although weak as a
specification language, static types have compensating virtues: they are

• lightweight, so programmers use them;

• machine-checked with minimal programmer assistance;

• ubiquitous, so programmers cannot avoid them.

As a result, static type checking is by far the most widely used verification
technology today.

Every type system excludes some “good” programs, and permits some “bad”
ones. For example, a language that lacks polymorphism will reject this “good”
program:

f :: [Int] -> [Bool] -> Int
f is bs = length is + length bs

Why? Because the length function cannot apply to both a list of Ints and a
list of Bools. The solution is to use a more sophisticated type system in which
we can give length a polymorphic type.

Conversely, most languages will accept the expression

speed + distance

where speed is a variable representing speed, and distance represents distance,
even though adding a speed to a distance is as much nonsense as adding a
character to a boolean.

The type-system designer wants to accommodate more good programs and
exclude more bad ones, without going overboard and losing the virtues men-
tioned above. In this paper we describe type families, an experimental addition
to Haskell with precisely this goal. We start by using type families to accom-
modate more good programs, then turn in Section 5 to excluding more bad
programs. We focus on the programmer, and our style is informal and tutorial.
The technical background can be found elsewhere [5–7, 43]. The complete code
described in the paper is available . That directory also contains the online
version of the paper with additional appendices, briefly describing the syntax
of type functions and the rules and pitfalls of their use. Appendix C gives an
alternative derivation of typed sprintf using higher-order type-level functions.

2 Associated types: indexing types by types

Haskell has long offered two ways to express relations on types. Multiparameter
type classes express arbitrary, many-to-many relations, whereas type construc-
tors express specifically functional relations, where one type (the ‘argument’)
uniquely determines the other. For example, the relation between the type of

2

a list and the type of that list’s elements is a functional relation, expressed
by the type constructor [] :: * -> *, which maps an arbitrary type a to the
type [a] of lists of a. A type constructor maps its argument types uniformly,
incorporating them into a more complex type without inspecting them. Type
functions, the topic of this paper, also establish functional relations between
types, but a type function may perform case analysis on its argument types.

For example, consider the relation between a monad that supports mutable
state and the corresponding type constructor for reference cells. The IO monad
supports the following operations on reference cells of type IORef a:

newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()

Similarly, the ST s monad supports the analogous operations on reference cells
of type STRef s a:

newSTRef :: a -> ST s (STRef s a)
readSTRef :: STRef s a -> ST s a
writeSTRef :: STRef s a -> a -> ST s ()

It is tempting to overload these operations using a multiparameter type class:

class Mutation m r where
newRef :: a -> m (r a)
readRef :: r a -> m a
writeRef :: r a -> a -> m ()

instance Mutation IO IORef where
newRef = newIORef
...etc...

instance Mutation (ST s) (STRef s) where
newRef = newSTRef
...etc...

This approach has two related disadvantages. First, the types of newRef and
the other class operations are too polymorphic: one could declare an instance
such as

instance Mutation IO (STRef s) where ...

even though we intend that the IO monad has exactly one reference type, namely
IORef. Second, as a result, it is extremely easy to write programs with ambigu-
ous typings, such as

readAndPrint :: IO ()
readAndPrint = do { r <- newRef ’x’; v <- readRef r; print v }

3

We know, from the type signature, that the computation is performed in the IO
monad, but type checker cannot select the type of r, since the IO monad could
have reference cells of many different types. Therefore, we must annotate r
with its type explicitly. Types are no longer lightweight when they have to be
explicitly specified even for such a simple function.

The standard solution to the second problem is to use a functional depen-
dency :

class Mutation m r | m -> r where ...

The “m -> r” part says that every m is related to at most one r. Functional
dependencies have become a much-used extension of Haskell, and we return to a
brief comparison in Section 6. Meanwhile, the main purpose of this paper is to
explain an alternative approach in which we express the functional dependency
at the type level in an explicitly functional way.

2.1 Declaring an associated type

The class Mutation does not really have two type parameters: it has one type
parameter, associated with another type that is functionally dependent. Type
families allow one to say this directly:

class Mutation m where
type Ref m :: * -> *
newRef :: a -> m (Ref m a)
readRef :: Ref m a -> m a
writeRef :: Ref m a -> a -> m ()

instance Mutation IO where
type Ref IO = IORef
newRef = newIORef
readRef = readIORef
writeRef = writeIORef

instance Mutation (ST s) where
type Ref (ST s) = STRef s
newRef = newSTRef
readRef = readSTRef
writeRef = writeSTRef

The class declaration now introduces a type function Ref (with a specified
kind) alongside the usual value functions such as newRef (each with a specified
type). Similarly, each instance declaration contributes a clause defining the
type function at the instance type alongside a witness for each value function.

We say that Ref is a type family, or an associated type of the class Mutation.
It behaves like a function at the type level, so we also call Ref a type function.
Applying a type function uses the same syntax as applying a type constructor:
Ref m a above means to apply the type function Ref to m, then apply the
resulting type constructor to a.

4

The types of newRef and readRef are now more perspicuous:

newRef :: Mutation m => a -> m (Ref m a)
readRef :: Mutation m => Ref m a -> m a

Furthermore, by omitting the functionally determined type parameter from
Mutation, we avoid the ambiguity problem exemplified by readAndPrint above.
When performing type inference for readAndPrint, the type of r is readily in-
ferred to be Ref IO Char, which the type checker reduces to IORef Char. In
general, the type checker reduces Ref IO to IORef, and Ref (ST s) to STRef s.

These type equalities aside, Ref behaves like any other type constructor,
and it may be used freely in type signatures and data type declarations. For
example, this declaration is fine:

data T m a = MkT [Ref m a]

2.2 Arithmetic

In the class Mutation of Section 2.1, we used an associated type to avoid a
two-parameter type class, but that is not to say that associated types obviate
multiparameter type classes. By declaring associated types in multiparameter
type classes, we introduce type functions that take multiple arguments. One
compelling use of such type functions is to make type coercions implicit, espe-
cially in arithmetic. Suppose we want to be able to write add a b to add two
numeric values a and b even if one is an Integer and the other is a Double
(without writing fromIntegral explicitly). We also want to add a scalar to
a vector represented by a list without writing repeat explicitly to coerce the
scalar to the vector type. The result type should be the simplest that is compat-
ible with both operands. We can express this intent using a two-parameter type
class, whose parameters are the argument types of add, and whose associated
type SumTy is the result:

class Add a b where
type SumTy a b
add :: a -> b -> SumTy a b

instance Add Integer Double where
type SumTy Integer Double = Double
add x y = fromIntegral x + y

instance Add Double Integer where
type SumTy Double Integer = Double
add x y = x + fromIntegral y

instance (Num a) => Add a a where
type SumTy a a = a
add x y = x + y

In other words, SumTy is a two-argument type function that maps the argu-
ment types of an addition to type of its result. The three instance declarations

5

explain how SumTy behaves on arguments of various types. We can then write
add (3::Integer) (4::Double) to get a result of type SumTy Integer Double,
which is the same as Double.

The same technique lets us conveniently build homogeneous lists out of het-
erogeneous but compatible components:

class Cons a b where
type ResTy a b
cons :: a -> [b] -> [ResTy a b]

instance Cons Integer Double where
type ResTy Integer Double = Double
cons x ys = fromIntegral x : ys

-- ...

With instances of this class similar to those of the class Add, we can cons an
Integer to a list of Doubles without any explicit conversion.

2.3 Graphs

Garcia et al. [15] compare the support for generic programming offered by
Haskell, ML, C++, C#, and Java. They give a table of qualitative conclusions,
in which Haskell is rated favourably in all respects except associated types. This
observation was one of the motivations for the work we describe here. Now that
GHC supports type functions, we can express their main example as follows:

class Graph g where
type Vertex g
data Edge g
src, tgt :: Edge g -> Vertex g
outEdges :: g -> Vertex g -> [Edge g]

newtype G1 = G1 [Edge G1]
instance Graph G1 where
type Vertex G1 = Int
data Edge G1 = MkEdge1 (Vertex G1) (Vertex G1)
-- ...definitions for methods...

newtype G2 = G2 (Map (Vertex G2) [Vertex G2])
instance Graph G2 where
type Vertex G2 = String
data Edge G2 = MkEdge2 Int (Vertex G2) (Vertex G2)
-- ...definitions for methods...

The class Graph has two associated types, Vertex and Edge. We show two
representative instances. In G1, a graph is represented by a list of its edges, and
a vertex is represented by an Int. In G2, a graph is represented by a mapping
from each vertex to a list of its immediate neighbours, a vertex is represented

6

by a String, and an Edge stores a weight (of type Int) as well as its end-points.
As these instance declarations illustrate, the declaration of a Graph instance is
free to use the type functions Edge and Vertex.

2.4 Associated data types

The alert reader will notice in the class Graph that the associated type for Edge
is declared using “data” rather than “type”. Correspondingly, the instance
declarations give a data declaration for Edge, complete with data constructors
MkEdge1 and MkEdge2. The reason for this use of data is somewhat subtle.

A type constructor such as [] expresses a functional relation between types
that is injective, mapping different argument types to different results. For
example, if two list types are the same, then their element types must be the
same, too. This injectivity does not generally hold for type functions. Consider
this function to find the list of vertices adjacent to the given vertex v in the
graph g:

neighbours g v = map tgt (outEdges g v)

We expect GHC to infer the following type:

neighbours :: Graph g => g -> Vertex g -> [Vertex g]

Certainly, outEdges returns a [Edge g1] (for some type g1), and tgt requires
its argument to be of type Edge g2 (for some type g2). So, GHC’s type checker
requires that Edge g1 ∼ Edge g2, where “∼” means type equality.1 Does that
mean that g1 ∼ g2, as intuition might suggest? Not necessarily! If Edge were
an associated type, rather than data, we could have written these instances:

instance Graph G3 where
type Edge G3 = (Int,Int)

instance Graph G4 where
type Edge G4 = (Int,Int)

so that Edge G3 ∼ Edge G4 even though G3 and G4 are distinct. In that case,
the inferred type of neighbours would be:

neighbours :: (Graph g1, Graph g2, Edge g1 ~ Edge g2)
=> g1 -> Vertex g1 -> [Vertex g2]

Although correct, this type is more general and complex than we want. By
declaring Edge with data, we specify that Edge is injective, that Edge g1 ∼
Edge g2 indeed implies g1 ∼ g2.2 GHC then infers the simpler type we want.

1“=” is used for too many other things.
2A possible extension, not currently implemented by GHC, would be to allow an associated

type synonym declaration optionally to specify that it should be injective, and to check that
this property is maintained as each instance is added.

7

2.5 Type functions are open

Value-level functions are closed in the sense that they must be defined all in one
place. For example, if one defines

length :: [a] -> Int

then one must give the complete definition of length in a single place:

length [] = 0
length (x:xs) = 1 + length xs

It is not legal to put the two equations in different modules.
In contrast, a key property of type functions is that, like type classes them-

selves, they are open and can be extended with additional instances at any time.
For example, if next week we define a new type Age, we can extend SumTy and
add to work over Age by adding an instance declaration:

newtype Age = MkAge Int

instance Add Age Int where
type SumTy Age Int = Age
add (MkAge a) n = MkAge (a+n)

We thus can add an Int to an Age, but not an Age or Float to an Age without
another instance.

2.6 Type functions may be recursive

Just as the instance for Show [a] is defined in terms of Show a, a type function
is often defined by structural recursion on the input type. Here is an example,
extending our earlier Add class with a new instance:

instance (Add Integer a) => Add Integer [a] where
type SumTy Integer [a] = [SumTy Integer a]
add x y = map (add x) y

Thus

SumTy Integer [Double] ∼ [SumTy Integer Double] ∼ [Double].

In a similar way, we may extend the Mutation example of Section 2.1 to
monad transformers. Recall that a monad transformer t :: (*->*) -> (*->*)
is a higher-order type constructor that takes a monad m into another monad t m.

class MonadTrans t where
lift :: Monad m => m a -> t m a

At the value level, lift turns a monadic computation (of type m a) into one in
the transformed monad (of type t m a). Now, if a monad m is an instance of
Mutation, then we can make the transformed monad t m into such an instance
too:

8

instance (Monad m, Mutation m, MonadTrans t)
=> Mutation (t m) where

type Ref (t m) = Ref m
newRef = lift . newRef
readRef = lift . readRef
writeRef = (lift .) . writeRef

The equation for Ref says that the type of references in the transformed monad
is the same as that in the base monad.

3 Optimised container representations

A common optimisation technique is to represent data of different types differ-
ently (rather than uniformly as character strings, for example). This technique
is best known when applied to container data. For example, we can use the
same array container to define a Bool array and to define an Int array, yet a
Bool array can be stored more compactly and negated elementwise faster when
its elements are tightly packed as a bit vector. C++ programmers use tem-
plate meta-programming to exploit this idea to great effect, for example in the
Boost library [48]. The following examples show how to express the same idea
in Haskell, using type functions to map among the various concrete types that
represent the same abstract containers.

3.1 Type-directed memoization

To memoize a function is to improve its future performance by recording and
reusing its past behaviour in a memo table [36]. The memo table augments the
concrete representation of the function without affecting its abstract interface.
A typical way to implement memoization is to add a lookup from the table on
entry to the function and an update to the table on exit from the function.
Haskell offers an elegant way to express memoization, because we can use lazy
evaluation to manage the lookup and update of the memo table. But type
functions offer a new possibility: the type of the memo table can be determined
automatically from the argument type of the memoized function [12, 19].

We begin by defining a type class Memo. The constraint Memo a means that
the behaviour of a function from an argument type a to a result type w can be
represented as a memo table of type Table a w, where Table is a type function
that maps a type to a constructor.

class Memo a where
data Table a :: * -> *
toTable :: (a -> w) -> Table a w
fromTable :: Table a w -> (a -> w)

For example, we can memoize any function from Bool by storing its two return
values as a lazy pair. This lazy pair is the memo table.

9

instance Memo Bool where
data Table Bool w = TBool w w
toTable f = TBool (f True) (f False)
fromTable (TBool x y) b = if b then x else y

To memoize a function f :: Bool -> Int, we simply replace it by g:

g :: Bool -> Int
g = fromTable (toTable f)

The first time g is applied to True, the Haskell implementation computes the
first component of the lazy pair (by applying f in turn to True) and remembers
it for future reuse. Thus, if f is defined by

f True = factorial 100
f False = fibonacci 100

then evaluating (g True + g True) will take barely half as much time as eval-
uating (f True + f True).

Generalising the Memo instance for Bool above, we can memoize functions
from any sum type, such as the standard Haskell type Either:

data Either a b = Left a | Right b

We can memoize a function from Either a b by storing a lazy pair of a memo
table from a and a memo table from b. That is, we take advantage of the
isomorphism between the function type Either a b -> w and the product type
(a -> w, b -> w).

instance (Memo a, Memo b) => Memo (Either a b) where
data Table (Either a b) w = TSum (Table a w) (Table b w)
toTable f = TSum (toTable (f . Left)) (toTable (f . Right))
fromTable (TSum t _) (Left v) = fromTable t v
fromTable (TSum _ t) (Right v) = fromTable t v

Of course, we need to memoize functions from a and functions from b; hence
the “(Memo a, Memo b) =>” part of the declaration. Dually, we can memoize
functions from the product type (a,b) by storing a memo table from a whose
entries are memo tables from b. That is, we take advantage of the currying
isomorphism between the function types (a,b) -> w and a -> b -> w.

instance (Memo a, Memo b) => Memo (a,b) where
newtype Table (a,b) w = TProduct (Table a (Table b w))
toTable f = TProduct (toTable (\x -> toTable (\y -> f (x,y))))
fromTable (TProduct t) (x,y) = fromTable (fromTable t x) y

3.2 Memoisation for recursive types

What about functions from recursive types, like lists? No problem! A list is a
combination of a sum, a product, and recursion:

10

instance (Memo a) => Memo [a] where
data Table [a] w = TList w (Table a (Table [a] w))
toTable f = TList (f [])

(toTable (\x -> toTable (\xs -> f (x:xs))))
fromTable (TList t _) [] = t
fromTable (TList _ t) (x:xs) = fromTable (fromTable t x) xs

As in Section 3.1, the type function Table is recursive. Since a list is either
empty or not, Table [Bool] w is represented by a pair (built with the data
constructor TList), whose first component is the result of applying the mem-
oized function f to the empty list, and whose second component memoizes
applying f to non-empty lists. A non-empty list (x:xs) belongs to a product
type, so the corresponding table maps each x to a table that deals with xs. We
merely combine the memoization of functions from sums and from products.

It is remarkable how laziness takes care of the recursion in the type [a]. A
memo table for a function f maps every possible argument x of f to a result
(f x). When the argument type is finite, such as Bool or (Bool,Bool), the
memo table is finite as well, but what if the argument type is infinite, such as
[Bool]? Then, of course, the memo table is infinite: in the instance declaration
above, we define toTable for [a] not only using toTable for a but also using
toTable for [a] recursively. Just as each value (f x) in a memo table is
evaluated only if the function is ever applied to that particular x, so each sub-
table in this memo table is expanded only if the function is ever applied to a
list with that prefix. So the laziness works at two distinct levels.

Now that we have dealt with sums, products, and recursion, we can deal
with any data type at all. Even base types like Int or Integer can be handled
by first converting them (say) to a list of digits, say [Bool]. Alternatively, it
is equally easy to give a specialised instance for Table Integer that uses some
custom (but infinite!) tree representation for Integer.

More generally, if we define Memo instances – once and for all – for sum
types, product types, and fixpoint types, then we can define a Memo instance
for some new type just by writing an isomorphism between the new type and
a construction out of sum types, product types, and fixpoint types. These
boilerplate Memo instances can in fact be defined generically, with the help of
functional dependencies [8] or type functions.3

3.3 Generic finite maps

A finite map is a partial function from a domain of keys to a range of values.
Finite maps can be represented using many standard data structures, such as
binary trees and hash tables, that work uniformly across all key types. However,
our memo-table development suggests another possibility, that of representing
a finite map using a memo table:

type Map key val = Table key (Maybe val)

3http://hackage.haskell.org/cgi-bin/hackage-scripts/package/pointless-haskell

11

That is, we represent a partial function from key to val as a total function
from key to Maybe val. But we get two problems. The smaller one is that
whereas Table did not need an insert method – once we construct the memo
table, we never need to update it – Map needs insert and many other methods
including delete and union. These considerations might lead us to add insert,
delete, etc. to the Table interface, where they appear quite out of place. A
nicer alternative would be to define a sub-class of Table.

The second, more substantial problem is that Table is unnecessarily ineffi-
cient in the way it represents keys that map to Nothing. An extreme case is an
empty map whose key type is Integer. An efficient finite map would represent
an empty map as an empty trie, so that the lookup operation returns imme-
diately with Nothing. If instead we represent the empty map as an (infinite)
Table mapping every Integer to Nothing, each lookup will explore a finite
path in the potentially infinite tree, taking time proportional the number of
bits in the Integer. Furthermore, looking up many Integers in such a Table
would force many branches of the Table, producing a large tree in memory,
with Nothing in every leaf! Philosophically, it seems nicer to distinguish the
mapping of a key to Nothing from the absence of the mapping for that key.

For these reasons, it makes sense to implement Map afresh [19, 22]. As with
Memo, we define a class Key and an associated data type Map:

class Key k where
data Map k :: * -> *
empty :: Map k v
lookup :: k -> Map k v -> Maybe v
-- ...many other methods could be added...

Now the instances follow in just the same way as before:

instance Key Bool where
data Map Bool elt = MB (Maybe elt) (Maybe elt)
empty = MB Nothing Nothing
lookup False (MB mf _) = mf
lookup True (MB _ mt) = mt

instance (Key a, Key b) => Key (Either a b) where
data Map (Either a b) elt = MS (Map a elt) (Map b elt)
empty = MS empty empty
lookup (Left k) (MS m _) = lookup k m
lookup (Right k) (MS _ m) = lookup k m

instance (Key a, Key b) => Key (a,b) where
data Map (a,b) elt = MP (Map a (Map b elt))
empty = MP empty
lookup (a,b) (MP m) = case lookup a m of

Nothing -> Nothing
Just m’ -> lookup b m’

12

The fact that this is a finite map makes the instance for Int easier than before,
because we can simply invoke an existing data structure (a Patricia tree, for
example) for finite maps keyed by Int:

instance Key Int where
newtype Map Int elt = MI (Data.IntMap.IntMap elt)
empty = MI Data.IntMap.empty
lookup k (MI m) = Data.IntMap.lookup k m

Implementations of other methods (such as insert and union) and instances
at other types (such as lists) are left as exercises for the reader.

Hutton describes another example with the same flavour [24].

3.4 Session types and their duality

We have seen a recursively defined correspondence between the type of keys
and the type of a finite map over those keys. The key and the lookup function
of a finite map can be regarded as a pair of processes that communicate in a
particular way: the key sends indices to the lookup, then the lookup responds
with the element’s value. In this section, we generalise this correspondence to
the relationship between a pair of processes that communicate with each other
by sending and receiving values in a session.

For example, consider the following definitions:

data Stop = Done
newtype In a b = In (a -> IO b)
data Out a b = Out a (IO b)

add_server :: In Int (In Int (Out Int Stop))
add_server = In $ \x -> return $ In $ \y ->

do { putStrLn "Thinking"
; return $ Out (x + y) (return Done) }

The function-like value add_server accepts two Ints in succession, then prints
“Thinking” before responding with an Int, their sum. We call add_server a
process, whose interface protocol is specified by its type – so called session type.
We write session types explicitly in this section, but they can all be inferred.

We may couple two processes whose protocols are complementary, or dual :

class Session a where
type Dual a
run :: a -> Dual a -> IO ()

Of course, to write down the definition of run we must also say what it means
to be dual. Doing so is straightforward:

instance (Session b) => Session (In a b) where
type Dual (In a b) = Out a (Dual b)
run (In f) (Out a d) = f a >>= \b -> d >>= \c -> run b c

13

instance (Session b) => Session (Out a b) where
type Dual (Out a b) = In a (Dual b)
run (Out a d) (In f) = f a >>= \b -> d >>= \c -> run c b

instance Session Stop where
type Dual Stop = Stop
run Done Done = return ()

The type system guarantees that the protocols of the two processes match.
Thus, if we write a suitable client add_client, like

add_client :: Out Int (Out Int (In Int Stop))
add_client = Out 3 $ return $ Out 4 $

do { putStrLn "Waiting"
; return $ In $ \z -> print z >> return Done }

we may couple them (either way around):

> run add_server add_client
Thinking
Waiting
7
> run add_client add_server
Thinking
Waiting
7

However, run will not allow us to couple two processes that do not have dual
protocols. Suppose that we write a negation server:

neg_server :: In Int (Out Int Stop)
neg_server = In $ \x ->

do { putStrLn "Thinking"
; return $ Out (-x) (return Done) }

Then (run add_client neg_server) will fail with a type error. Just as the
Memo class represents functions of type a -> w by memo tables of the matching
type Table a w, this Session class represents consumers of type a -> IO ()
by producers of the matching type Dual a.

These protocols do not allow past communication to affect the type and
direction of future exchanges. For example, it seems impossible to write a well-
typed server that begins by receiving a Bool, then performs addition if True is
received and negation if False is received. However, we can express a protocol
that chooses between addition and negation (or more generally, a protocol that
chooses among a finite number of ways to continue). We simply treat such a
binary choice as a distinct sort of protocol step. The receiver of the choice has
a product type, whereas the sender has a sum type:

instance (Session a, Session b) => Session (Either a b) where
type Dual (Either a b) = (Dual a, Dual b)
run (Left y) (x,_) = run y x
run (Right y) (_,x) = run y x

14

instance (Session a, Session b) => Session (a, b) where
type Dual (a,b) = Either (Dual a) (Dual b)
run (x,_) (Left y) = run x y
run (_,x) (Right y) = run x y

These additional instances let us define a combined addition-negation server,
along with a client that chooses to add. The two new processes sport (inferable)
types that reflect their initial choice.

server :: (In Int (Out Int Stop),
In Int (In Int (Out Int Stop)))

server = (neg_server, add_server)

client :: Either (Out Int (In Int Stop))
(Out Int (Out Int (In Int Stop)))

client = Right add_client

To connect server and client, we can evaluate either run server client
or run client server. The session type of the client hides which of the two
choices the client eventually selects; the choice may depend on user input at run
time, which the type checker has no way of knowing. The type checker does
statically verify that the corresponding server can handle either choice.

With the instances defined above, each protocol allows only a finite number
of exchanges, so a server cannot keep looping until the client disconnects. This
restriction is not fundamental: recursion in protocols can be expressed, for
example using an explicit fixpoint operator at the type level [39].

We can also separate the notion of a process from that of a channel, and
associate a protocol with the channel rather than the process. This and other
variants have been explored in other works [26, 27, 37, 39, 42], from which we
draw the ideas of this section in a simplified form.

In principle, we can require that Dual be an involution (that is, Dual be its
own inverse) by adding a equality constraint as a superclass of Session:

class (Dual (Dual a) ~ a) => Session a where ...

We can then invoke run on a pair of processes without worrying about which
process is known to be the dual of which other process. More generally, this
technique lets us express bijections between types. However, such equality su-
perclasses are not yet implemented in the latest release of GHC (6.10).

4 Typed sprintf and sscanf

We conclude the first half of the paper, about using type functions to accommo-
date more good programs, with a larger example: typed sprintf and sscanf.

A hoary chestnut for typed languages is the definition of sprintf and
sscanf. Although these handy functions are present in many languages (such
as C and Haskell), they are usually not type-safe: the type checker does not
stop the programmer from passing to sprintf more or fewer arguments than

15

required by the format descriptor. The typing puzzle is that we want the fol-
lowing to be true:

sprintf "Name=%s" :: String -> String
sprintf "Age=%d" :: Int -> String
sprintf "Name=%s, Age=%d" :: String -> Int -> String

That is, the type of (sprintf fs) depends on the value of the format descriptor
fs. Supporting such dependency directly requires a full-spectrum dependently
typed language, but there is a small literature of neat techniques for getting
close without such a language [1, 9, 20]. Here we show one technique using type
families. In fact, we accomplish something more general: typed sprintf and
sscanf sharing the same format descriptor. Typed sprintf has received a lot
more attention than typed sscanf, and it is especially rare for an implementa-
tion of both to use the same format descriptor.

4.1 Typed sprintf

We begin with two observations:

• Format descriptors in C are just strings, which leaves the door wide
open for malformed descriptors that sprintf does not recognise (e.g.,
sprintf "%?"). The language of format descriptors is a small domain-
specific language, and the type checker should reject ill-formed descriptors.

• In Haskell, we cannot make the type of (sprintf f) depend on the value
of the format descriptor f. However, using type functions, we can make
it depend on the type of f.

Putting these two observations together suggests that we use a now-standard
design pattern: a domain-specific language expressed using a generalised alge-
braic data type (GADT) indexed by a type argument. Concretely, we can define
the type of format descriptors F as follows:

data F f where
Lit :: String -> F L
Val :: Parser val -> Printer val -> F (V val)
Cmp :: F f1 -> F f2 -> F (C f1 f2)

data L
data V val
data C f1 f2

type Parser a = String -> [(a,String)]
type Printer a = a -> String

So F is a GADT with three constructors, Lit, Val, and Cmp.4 Our intention is
that (sprintf f) should behave as follows:

4“Cmp” is short for “compose”.

16

• If f = Lit s, then print (that is, return as the output string) s.

• If f = Cmp f1 f2, then print according to descriptor f1 and continue
according to descriptor f2.

• If f = Val r p, then use the printer p to convert the first argument to a
string to print. (The r argument is used for parsing in Section 4.2 below.)

If fmt :: F ty, then the type ty encodes the shape of the term fmt. For exam-
ple, given int :: F (V Int), we may write the following format descriptors:

f_ld = Lit "day" :: F L
f_lds = Cmp (Lit "day") (Lit "s") :: F (C L L)
f_dn = Cmp (Lit "day ") int :: F (C L (V Int))
f_nds = Cmp int (Cmp (Lit " day") (Lit "s")) :: F (C (V Int) (C L L))

In each case, the type encodes an abstraction of the value. (We have specified
the types explicitly, but they can be inferred.) The types L, V, and C are type-
level abstractions of the terms Lit, Val, and Cmp. These types are uninhabited
by any value, but they index values in the GADT F, and they are associated with
other, inhabited types by two type functions. We turn to these type functions
next.

We want an interpreter sprintf for this domain-specific language, so that:

sprintf :: F f -> SPrintf f

where SPrintf is a type function that transforms the (type-level) format de-
scriptor f to the type of (sprintf f). For example, the following should all
work:

sprintf f_ld -- Result: "day"
sprintf f_lds -- Result: "days"
sprintf f_dn 3 -- Result: "day 3"
sprintf f_nds 3 -- Result: "3 days"

It turns out that the most convenient approach is to use continuation-passing
style, at both the type level and the value level. At the type level, we define
SPrintf above using an auxiliary type function TPrinter. Because TPrinter
has no accompanying value-level operations, a type class is not needed. Instead,
GHC allows the type function to be defined directly, like this:5

type SPrintf f = TPrinter f String

5GHC requires the alarming flag -XAllowUndecidableInstances to accept the (C f1 f2)

instance for TPrinter, because the nested recursive call to TPrinter does not “obviously
terminate”. Of course, every call to TPrinter does terminate, because the second argument
(where the nested recursive call is made) is not scrutinised by any of the equations, but this is
a non-local property that GHC does not check. The flag promises the compiler that TPrinter
will terminate; the worst that can happen if the programmer makes an erroneous promise is
that the type checker diverges.

17

type family TPrinter f x
type instance TPrinter L x = x
type instance TPrinter (V val) x = val -> x
type instance TPrinter (C f1 f2) x = TPrinter f1 (TPrinter f2 x)

So SPrintf is actually just a vanilla type synonym, which calls the type function
TPrinter with second parameter String. Then TPrinter transforms the type
as required. For example:

SPrintf (C L (V Int)) ∼ TPrinter (C L (V Int)) String
∼ TPrinter L (TPrinter (V Int) String)
∼ TPrinter (V Int) String
∼ Int -> String

At the value level, we proceed thus:

sprintf :: F f -> SPrintf f
sprintf p = printer p id

printer :: F f -> (String -> a) -> TPrinter f a
printer (Lit str) k = k str
printer (Val _ show) k = \x -> k (show x)
printer (Cmp f1 f2) k = printer f1 (\s1 ->

printer f2 (\s2 ->
k (s1++s2)))

It is interesting to see how printer type-checks. Inside the Lit branch, for ex-
ample, we know that f is L, and hence that the desired result type TPrinter f a
is TPrinter L a, or just a. Since k str :: a, the actual result type matches
the desired one. Similar reasoning applies to the Val and Cmp branches.

4.2 Typed sscanf

We can use the same domain-specific language of format descriptors for parsing
as well as printing. That is, we can write

sscanf :: F f -> SScanf f

where SScanf is a suitable type function. For example, reusing the format
descriptors defined above, we may write:

sscanf f_ld "days long" -- Result: Just ((), "s long")
sscanf f_ld "das long" -- Result: Nothing
sscanf f_lds "days long" -- Result: Just ((), " long")
sscanf f_dn "day 4." -- Result: Just (((),4), ".")

In general, sscanf f s returns Nothing if the parse fails, and Just (v,s’) if
it succeeds, where s’ is the unmatched remainder of the input string, and v is
a (left-nested) tuple containing the parsed values. The details are now fairly
routine:

type SScanf f = String -> Maybe (TParser f (), String)

18

type family TParser f x
type instance TParser L x = x
type instance TParser (V val) x = (x,val)
type instance TParser (C f1 f2) x = TParser f2 (TParser f1 x)

sscanf :: F f -> SScanf f
sscanf fmt inp = parser fmt () inp

parser :: F f -> a -> String -> Maybe (TParser f a, String)
parser (Lit str) v s = parseLit str v s
parser (Val reads _) v s = parseVal reads v s
parser (Cmp f1 f2) v s = case parser f1 v s of

Nothing -> Nothing
Just (v1,s1) -> parser f2 v1 s1

parseLit :: String -> a -> String -> Maybe (a, String)
parseLit str v s = case prefix str s of

Nothing -> Nothing
Just s’ -> Just (v, s’)

parseVal :: Parser b -> a -> String -> Maybe ((a,b), String)
parseVal reads v s = case reads s of

[(v’,s’)] -> Just ((v,v’),s’)
_ -> Nothing

4.3 Reflections

We conclude with a few reflections on the design.

• Our Val constructor makes it easy to add printers for new types. For
example:

newtype Dollars = MkD Int

dollars :: F (V Dollars)
dollars = Val read_dol show_dol
where
read_dol (’$’:s) = [(MkD d, s) | (d,s) <- reads s]
read_dol _ = []
show_dol (MkD d) = ’$’ : show d

• Our approach is precisely that of Hinze [20], except that we use type
functions and GADTs (unavailable when Hinze wrote) to produce a much
more elegant result.

• It is (just) possible to take the domain-specific-language approach without
using type functions, albeit with less clarity and greater fragility [32].

• Defining F as a GADT makes it easy to define new interpreters beyond
sprintf and sscanf, but hard to add new format-descriptor combinators.

19

A dual approach [34], which makes it easy to add new descriptors but hard
to define new interpreters, is to define F as a record of operations:

data F f = F {
printer :: forall a. (String -> a) -> TPrinter f a,
parser :: forall a. a -> String

-> Maybe (TParser f a, String) }

Instead of being a GADT, F becomes a higher-rank data constructor – that
is, its arguments are polymorphic functions. The type functions TPrinter
and TParser are unchanged. The format-descriptor combinators are no
longer data constructors but ordinary functions instead:

lit :: String -> F I
lit str = F { printer = \k -> k str,

parser = parseLit str }

int :: F (V Int)
int = F { printer = \k i -> k (show i),

parser = parseVal reads }

• If we consider only sprintf or only sscanf, then the type-level format
descriptor is the result of defunctionalizing a type-level function, and
TPrinter or TParser is the apply function [10, 40]. Considering sprintf
and sscanf together takes format descriptors out of the image of defunc-
tionalization.

In general, type functions let us easily express a parser that operates on
types (and produces corresponding values). In this way, we can overlay our own
domain-specific, variable-arity syntax onto Haskell’s type system.6 For example,
we can concisely express XML documents,7 linear algebra,8 and even keyword
arguments.9

5 Fun with phantom types

Each type function above returns types that are actually used in the value-level
computations. In other words, type functions are necessary to type-check the
overloaded functions above. For example, it is thanks to the type function Ref
that the value functions newIORef and newSTRef can be overloaded under the
name newRef. In contrast, this section considers type functions that operate on
so-called phantom types.

Phantom types enforce distinctions among values with the same run-time
representation, such as numbers with different units [31] and strings for differ-
ent XML elements. Functions on phantom types propagate these distinctions

6http://okmij.org/ftp/Haskell/types.html#polyvar-fn
7http://okmij.org/ftp/Haskell/typecast.html#solving-read-show
8http://okmij.org/ftp/Haskell/typecast.html#is-function-type
9http://okmij.org/ftp/Haskell/keyword-arguments.lhs

20

through a static approximation of the computation. Phantom types and func-
tions on them thus let us reason more precisely about a program’s behaviour
before running it, essentially by defining additional type-checking rules that re-
fine Haskell’s built-in ones. The reader may find many applications of phantom
types elsewhere [13, 14, 21]; our focus here is on the additional expressiveness
offered by type families – to exclude more bad programs.

5.1 Pointer arithmetic and alignment

The refined distinctions afforded by phantom types are especially useful in em-
bedded and systems programming, where a Haskell program (or code it gener-
ates) performs low-level operations such as direct memory access and interacts
with hardware device drivers [11, 33]. It is easy to use phantom types to en-
force access permissions (read versus write), but we take the example of pointer
arithmetic and alignment to illustrate the power of type functions.

Many hardware operations require pointers that are properly aligned (that
is, divisible) by a statically known small integer, even though every pointer, no
matter how aligned, is represented by a machine word at run time. Our goal is
to distinguish the types of differently aligned pointers and thus prevent the use
of misaligned pointers.

Before we can track pointer alignment, we first need to define natural num-
bers at the type level. The type Zero represents 0, and if the type n represents n
then the type Succ n represents n+ 1.

data Zero
data Succ n

For convenience, we also define synonyms for small type-level numbers.

type One = Succ Zero
type Two = Succ One
type Four = Succ (Succ Two)
type Six = Succ (Succ Four)
type Eight = Succ (Succ Six)

These type-level numbers belong to a class Nat, whose value member toInt lets
us read off each number as an Int:

class Nat n where
toInt :: n -> Int

instance Nat Zero where
toInt _ = 0

instance (Nat n) => Nat (Succ n) where
toInt _ = 1 + toInt (undefined :: n)

In this code, toInt uses a standard Haskell idiom called proxy arguments. As
the underscores in its instances show, toInt never examines its argument.
Nevertheless, it must take an argument, as a proxy that specifies which instance
to use. Here is how one might call toInt:

21

Prelude> toInt (undefined :: Two)
2

We use Haskell’s built-in undefined value, and specify that it has type Two,
thereby telling the compiler which instance of Nat to use. There is exactly such
a call in the (Succ n) instance of Nat, only in that case the proxy argument is
given the type n, a lexically scoped type variable.

As promised above, we represent a pointer or offset as a machine word at
run time, but use a phantom type at compile time to track how aligned we know
the pointer or offset to be.

newtype Pointer n = MkPointer Int
newtype Offset n = MkOffset Int

Thus a value of type Pointer n is an n-byte-aligned pointer; and a value of
type Offset n is a multiple of n. For example, a Pointer Four is a 4-byte-
aligned pointer. Pointer n is defined as a newtype and so the data constructor
MkPointer has no run-time representation. In other words, the phantom-type
alignment annotation imposes no run-time overhead.

To keep this alignment knowledge sound, the data constructors MkPointer
and MkOffset above must not be exported for direct use by clients. Instead,
clients must construct Pointer and Offset values using “smart constructors”.
One such constructor is multiple:

multiple :: forall n. (Nat n) => Int -> Offset n
multiple i = MkOffset (i * toInt (undefined :: n))

So (multiple i) is the i-th multiple of the alignment specified by the return
type. For example, evaluating multiple 3 :: Offset Four yields MkOffset 12,
the 3rd multiple of a Four-byte alignment.

When a pointer is incremented by an offset, the resulting pointer is aligned
by the greatest common divisor (GCD) of the alignments of the original pointer
and the offset. To express this fact, we define a type function GCD to com-
pute the GCD of two type-level numbers. Actually, GCD takes three arguments:
GCD d m n computes the GCD of d+m and d+n. We will define GCD in a moment,
but assuming we have it we can define add:

add :: Pointer m -> Offset n -> Pointer (GCD Zero m n)
add (MkPointer x) (MkOffset y) = MkPointer (x + y)

Thus, if p has the type Pointer Eight and o has the type Offset Six, then
add p o has the type Pointer Two.

The type checker does not check that x + y is indeed aligned by the GCD.
Like multiple, the function add is trusted code, and its type expresses claims
that its programmer must guarantee. Once she does so, however, the clients of
add have complete security. If fetch32 is an operation that works on 4-aligned
pointers only, then we can give it the type

(GCD Zero n Four ~ Four) => Pointer n -> IO ()

22

In words, fetch32 works on any pointer whose alignment’s GCD with 4 is 4. It
is then a type error to apply fetch32 to add p o, but it is acceptable to apply
fetch32 to p.

Because the type function GCD has no accompanying value-level operations,
we can define it without a type class:

type family GCD d m n
type instance GCD d Zero Zero = d
type instance GCD d (Succ m) (Succ n) = GCD (Succ d) m n
type instance GCD Zero (Succ m) Zero = Succ m
type instance GCD (Succ d) (Succ m) Zero = GCD (Succ Zero) d m
type instance GCD Zero Zero (Succ n) = Succ n
type instance GCD (Succ d) Zero (Succ n) = GCD (Succ Zero) d n

5.2 Tracking state and control in a parameterized monad

Because actions in Haskell are values as well, phantom types can be used to
enforce properties on actions and control flow as well as on values and data flow.
In particular, we can express the preconditions and postconditions of monadic
actions by generalising monads to parameterized monads [2]. A parameterized
monad is a type constructor that takes three arguments, reminiscent of a Hoare
triple: an initial state, a final state, and the type of values produced by the
action. As shown in the following class definition (generalising the Monad class),
a pure action does not change the state, and concatenating two actions identifies
the final state of the first action with the initial state of the second action.

class PMonad m where
unit :: a -> m p p a
bind :: m p q a -> (a -> m q r b) -> m p r b

The precise meaning of states depends on the particular parameterized monad:
they could describe files open, time spent, or the shape of a managed heap [33].
In this example, we use a parameterized monad to track the locks held among
a given (finite) set.

A lock can be acquired only if it is not currently held, and released only if it
is currently held. Furthermore, no lock is held at the beginning of the program,
and no lock should be held at the end. We encode a set of locks and whether each
is held by a type-level list of booleans. The spine of the list is made of Cons cells
and Nil; each element of the list is either Locked or Unlocked. For example,
suppose we are tracking three locks. If only the first and last are held, then the
state is the type Cons Locked (Cons Unlocked (Cons Locked Nil)).

data Nil
data Cons l s

data Locked
data Unlocked

23

The run-time representation of our parameterized monad is simply that of
Haskell’s IO monad, so it is easy to implement a PMonad instance.

newtype LockM p q a = LockM { unLockM :: IO a }

instance PMonad LockM where
unit x = LockM (return x)
bind m k = LockM (unLockM m >>= unLockM . k)

It is also easy to lift an IO action that does not affect locks to become a LockM
action whose initial and final states are the same and arbitrary.

lput :: String -> LockM p p ()
lput = LockM . putStrLn

To manipulate boolean lists at the type level, we define type functions Get
and Set. Given a type-level natural number n and a list p, the type Get n p is
the n-th element of that list, and the type Set n e p is the result of replacing
the n-th element of p by e. The first element of a list is indexed by Zero. It is
a type error if the element does not exist because the list is too short.

type family Get n p
type instance Get Zero (Cons e p) = e
type instance Get (Succ n) (Cons e p) = Get n p

type family Set n e’ p
type instance Set Zero e’ (Cons e p) = Cons e’ p
type instance Set (Succ n) e’ (Cons e p) = Cons e (Set n e’ p)

We represent a lock as a mutex handle (here caricatured by an Int), with
a phantom type n attached to identify the lock at compile time. The phantom
type n is an index into a type-level list.

newtype Lock n = Lock Int deriving Show

mkLock :: forall n. Nat n => Lock n
mkLock = Lock (toInt (undefined::n))

The data constructor introduced by the newtype declaration has no run-time
representation and so this wrapping imposes no run-time overhead. We make
one lock, lock1, for the sake of further examples.

lock1 = mkLock :: Lock One

We can now define actions to acquire and release locks. The types of the
actions reflect their constraints on the state.

acquire :: (Get n p ~ Unlocked) =>
Lock n -> LockM p (Set n Locked p) ()

acquire l = LockM (putStrLn ("acquire " ++ show l))

24

release :: (Get n p ~ Locked) =>
Lock n -> LockM p (Set n Unlocked p) ()

release l = LockM (putStrLn ("release " ++ show l))

In the type of acquire, the constraint Get n p ~ Unlocked is the precondition
on the state before acquiring the lock: the lock to be acquired must not be
already held. The final state of the LockM action returned by acquire specifies
the postcondition: the lock just acquired is Locked. For the release action,
the pre- and postconditions are the converse. To keep the example simple, we
do not manipulate any real locks; rather, we print our intentions.

At the top level, a LockM action is executed by applying the function run to
turn it into an IO action. The type of run below requires that the action begin
and end with no lock held among three available.

type ThreeLocks = Cons Unlocked (Cons Unlocked (Cons Unlocked Nil))
run :: LockM ThreeLocks ThreeLocks a -> IO a
run = unLockM

For example, given any action a, the action with1 a defined below acquires
lock 1, performs a, then releases lock 1 and returns the result of a.

with1 a = acquire lock1 ‘bind‘ _ ->
a ‘bind‘ \x ->
release lock1 ‘bind‘ _ ->
unit x

Therefore, we can execute run (with1 (lput "hello")) by itself.

> run (with1 (lput "hello"))
acquire Lock 1
hello
release Lock 1

Multiple locks can be held at the same time and need not be released in the
opposite order as they were acquired. However, the type system prevents us from
nesting with1 inside with1, because such an action would try to acquire lock 1
twice. Indeed, the expression run (with1 (with1 (lput "hello"))) does not
type-check. We also cannot acquire a lock without releasing it subsequently. For
example, the expression run (acquire lock1) is rejected.

We can also introduce actions that do not change the state of locks yet
require that a certain lock be held:

critical1 :: (Get One p ~ Locked) => LockM p p ()
critical1 = LockM (putStrLn "Critical section 1")

An attempt to run such an action without holding the required lock, as in
run critical1, is rejected by the type checker. On the other hand, the pro-
gram run (with1 critical1) type checks and can be successfully executed.
Likewise, we can define potentially blocking actions, to be executed only when
a lock is not held; the type checker will then prevent such actions within a
critical section protected by the lock.

25

5.3 Keeping the kinds straight

It will not have escaped the reader’s notice that we are doing untyped functional
programming at the type level. For example, the kind of GCD is

GCD :: * -> * -> * -> *

so the compiler would accept the nonsensical type (GCD Int Zero Bool). The
same problem occurs with Pointer n and other types defined in this section.
We can alleviate the problem using the Nat n constraint. For example, we could
define Pointer n as

newtype Nat n => Pointer n = MkPointer Int

so that, for example, Pointer Bool becomes invalid and will raise a compile-
time error. The constraint Nat n is a kind predicate, specifying the set of types
that constitute natural numbers – just as the type Int specifies a set of values.

We wish for the convenience and discipline of algebraic data kinds when
writing type-level functions, just as we are accustomed to algebraic data types
in conventional, term-level programs. We could find a way to ‘lift’ the ordinary
data type declaration

data N = Zero | Succ N

to the kind level. Alternatively, we may want to declare algebraic data kinds
like this:

data kind N = Zero | Succ N

Here N is a kind constant and Zero and Succ are type constructors. Now GCD
could have the kind

GCD :: N -> N -> N -> N

Similarly, Pointer and Offset should both have kind N -> *. Much the same
applies in the discussion of state and control, where we would rather write:

data kind ListLS = Nil | Cons LockState ListLS
data kind LockState = Locked | Unlocked

then give a decent kind to Get:

Get :: N -> ListS -> LockState

Furthermore, unlike the earlier examples in which it was crucial that our type
functions were open (Section 2.5), type functions such as GCD and Get are closed,
in that all their equations are given in one place.

These are shortcomings of GHC’s current implementation, but there is no
technical difficulty with algebraic data kinds, and indeed they are fully sup-
ported by the Omega language [44].

26

5.4 Type-preserving compilers

A popular, if incestuous, application of Haskell is for writing compilers. If the
object language is statically typed, then one can index a GADT by a phantom
type to ensure that only well-typed object programs can be represented in the
compiler [38]:

data Exp a where
Enum :: Int -> Exp Int
Eadd :: Exp Int -> Exp Int -> Exp Int
Eapp :: Exp (a->b) -> Exp a -> Exp b
...

Now an optimiser and an evaluator might have types

optimise :: Exp a -> Exp a
evaluate :: Exp a -> a

which compactly express the facts that (a) the optimiser need only deal with
well-typed object terms, (b) optimising a term does not change its type, and
(c) evaluating a term yields a value of the correct type.

But what about transforming programs into continuation-passing style? In
that case, the type of the result term is a function of the type of the argument
term:

cpsConvert :: Exp a -> Exp (CpsT a)

Here CpsT maps a type a to its CPS-converted version [35]. Guillemette and
Monnier express CpsT as a type-level function [18], whereas Carette et al. show
how to do without type-level functions [4].

6 Related work and reflections

The goal of type families is to build on the success of static type systems, by
extending their power and expressiveness without losing their brevity and com-
prehensibility to programmers. (Of course, there is an implicit tension between
these goals, and the reader will have to judge how successful we have been.)
There are other designs with similar goals:

• Functional dependencies took the Haskell community by storm when Mark
Jones introduced them [30], because they met a real need. Many, perhaps
all, of the examples in this tutorial can also be programmed using func-
tional dependencies, but the programming style at the type level feels like
logic programming rather than functional programming. The reader may
find a programmer’s-eye comparison of the two approaches in [6]. Jones
showed recently how the stylistic question can be at least partly addressed
by a notational device [28] but, more fundamentally, the interaction of
functional dependencies with other type-level features such as existentials

27

and GADTs is not well understood and possibly problematic. In fact, one
may see type families as a way to understand functional dependencies in
these more general settings.

• Omega [44] is a prototype programing language that specifically aims to
provide the programmer with type-level computation. It goes quite a bit
further than GHC’s type families (for example, Omega has an infinite
tower of kinds and supports closed type functions), but lacks type classes
and much of the other Haskell paraphernalia. Omega comes with a number
of excellent papers giving many a motivating example [45–47].

These designs, along with GHC’s type families, can be thought of as helping
programmers prove more interesting theorems that characterise their programs.
Meanwhile, the theorem-proving and type-theory community has been drawing
from its long history of type-level computation to help mathematicians write
more interesting programs that witness their theorems [3].

The motivation for type-level computations comes from the Curry-Howard
correspondence [17, 23] that underlies Martin-Löf’s intuitionistic type theory:
propositions are types, and proofs are terms. The more expressive a type system,
the more propositions we can state and prove in it, such as properties involving
numbers and arithmetic. Hence expressive languages such as those of NuPRL,
Coq, Epigram, and Agda permit types involving numbers and arithmetic. For
example, the following type in Agda states that addition is commutative:

(n m : Nat) -> n + m == m + n

To prove this proposition is to write a term of this type, and to check the proof is
the job of the type checker. To do its job, the type checker may need to simplify
a type like (Zero + m) to m, so type checking involves type-level computations.
Because a proof checker should always terminate, it is natural to insist that
type-level computations also always terminate.

Since proof assistants based on type theory implement a (richly typed) λ-
calculus, they can be used to program – that is, to write terms that compute
interesting values, not just inhabit interesting types. To this end, an expressive
type system lets us state and prove more interesting properties about programs –
of the sort we have shown in this paper. Tools such as Coq, Epigram, and Agda
thus cater increasingly to the use of theorem proving for practical programming.
This convergence of theory and practice renews our commitment to Tony Hoare’s
ideal of simple, reliable software.

Acknowledgements

We would like to thank people who responded to our invitation to suggest inter-
esting examples of programming with type families, or commented on a draft of
the paper: Lennart Augustsson, Neil Brown, Toby Hutton, Ryan Ingram, Chris
Kuklewicz, Dave Menendez, Benjamin Moseley, Hugh Pacheco, Conrad Parker,

28

Bernie Pope, Tom Schrijvers, Josef Svenningsson, Paulo Tanimoto, Magnus Th-
erning, Ashley Yakeley, and Brent Yorgey.

References

[1] Asai, Kenichi. 2008. On typing delimited continuations: three new solutions
to the printf problem. Tech. Rep. OCHA-IS 08-2. http://pllab.is.ocha.
ac.jp/~asai/papers/tr07-1.ps.gz.

[2] Atkey, Robert. 2006. Parameterised notions of computation. In MSFP
2006: Workshop on mathematically structured functional programming, ed.
Conor McBride and Tarmo Uustalu. Electronic Workshops in Computing,
British Computer Society.

[3] Bove, Anna, and Peter Dybjer. 2009. Dependent types at work. In In-
ternational summer school on language engineering and rigorous software
development. Lecture Notes in Computer Science 5520.

[4] Carette, Jacques, Oleg Kiselyov, and Chung-chieh Shan. 2008. Finally
tagless, partially evaluated: Tagless staged interpreters for simpler typed
languages. Journal of Functional Programming. In press.

[5] Chakravarty, Manuel. 2008. Type families. http://haskell.org/
haskellwiki/GHC/Indexed_types.

[6] Chakravarty, Manuel M. T., Gabriele Keller, and Simon L. Peyton Jones.
2005. Associated type synonyms. In ICFP ’05: Proc. ACM international
conference on functional programming, 241–253. New York: ACM Press.

[7] Chakravarty, Manuel M. T., Gabriele Keller, Simon L. Peyton Jones, and
Simon Marlow. 2005. Associated types with class. In POPL ’05: Confer-
ence record of the annual ACM symposium on principles of programming
languages, ed. Jens Palsberg and Mart́ın Abadi, 1–13. New York: ACM
Press.

[8] Cunha, Alcino, Jorge Sousa Pinto, and José Proença. 2006. A framework
for point-free program transformation. In Revised selected papers from IFL
2005: Implementation and application of functional languages, ed. Andrew
Butterfield, Clemens Grelck, and Frank Huch, 1–18. Lecture Notes in Com-
puter Science 4015, Berlin: Springer.

[9] Danvy, Olivier. 1998. Functional unparsing. Journal of Functional Pro-
gramming 8(6):621–625.

[10] Danvy, Olivier, and Lasse R. Nielsen. 2001. Defunctionalization at work. In
Proceedings of the 3rd international conference on principles and practice
of declarative programming, 162–174. New York: ACM Press.

29

[11] Diatchki, Iavor S., and Mark P. Jones. 2006. Strongly typed memory areas:
Programming systems-level data structures in a functional language. In
Proceedings of the 2006 Haskell Workshop. New York: ACM Press.

[12] Elliott, Conal. 2008. Elegant memoization with functional memo
tries. http://conal.net/blog/posts/elegant-memoization-with-
functional-memo-tries.

[13] Fluet, Matthew, and Riccardo Pucella. 2005. Practical datatype special-
izations with phantom types and recursion schemes. In Proceedings of the
2005 workshop on ML. Electronic Notes in Theoretical Computer Science.

[14] ———. 2006. Phantom types and subtyping. Journal of Functional Pro-
gramming 16(6):751–791.

[15] Garcia, Ronald, Jaakko Jarvi, Andrew Lumsdaine, Jeremy Siek, and
Jeremiah Willcock. 2007. An extended comparative study of language sup-
port for generic programming. Journal of Functional Programming 17(2):
145–205.

[16] Gill, Andrew, ed. 2008. Proceedings of the 1st ACM SIGPLAN symposium
on Haskell. New York: ACM Press.

[17] Girard, Jean-Yves, Paul Taylor, and Yves Lafont. 1989. Proofs and types.
Cambridge: Cambridge University Press.

[18] Guillemette, Louis-Julien, and Stefan Monnier. 2008. A type-preserving
compiler in Haskell. In [25], 75–90.

[19] Hinze, Ralf. 2000. Generalizing generalized tries. Journal of Functional
Programming 10(4):327–351.

[20] ———. 2003. Formatting: A class act. Journal of Functional Programming
13(5):935–944.

[21] ———. 2003. Fun with phantom types. In The fun of programming, ed.
Jeremy Gibbons and Oege de Moor, 245–262. Palgrave.

[22] Hinze, Ralf, Johan Jeuring, and Andres Löh. 2002. Type-indexed data
types. In Proceedings of the Sixth International Conference on Mathe-
matics of Program Construction (MPC 2002), 148–174. Lecture Notes in
Computer Science 2386, Springer Verlag.

[23] Howard, William A. 1980. The formulae-as-types notion of construction.
In To H. B. Curry: Essays on combinatory logic, lambda calculus and
formalism, ed. Jonathan P. Seldin and J. Roger Hindley, 479–490. San
Diego, CA: Academic Press.

[24] Hutton, Toby. 2008. Fun with type functions. http://www.haskell.org/
pipermail/haskell-cafe/2008-November/051105.html.

30

[25] ICFP08. 2008. ICFP ’08: Proc. ACM international conference on func-
tional programming. New York: ACM Press.

[26] Imai, Keigo, Shoji Yuen, and Kiyoshi Agusa. 2009. A full implemen-
tation of session types in haskell. In PPL2009: 11th programming and
programming languages workshop. http://www.agusa.i.is.nagoya-
u.ac.jp/person/sydney/fullsession-ppl2009/20090224/imai-
ppl2009-submitted1.pdf.

[27] Ingram, Ryan. 2008. Fun with type functions. http://www.haskell.org/
pipermail/haskell-cafe/2008-November/051108.html.

[28] Jones, Mark. 2008. Languages and program design for functional depen-
dencies. In [16], 87–98.

[29] Jones, Mark P. 1995. Functional programming with overloading and higher-
order polymorphism. In Advanced Functional Programming: 1st Interna-
tional Spring School on Advanced Functional Programming Techniques, ed.
Johan Jeuring and Erik Meijer, 97–136. Lecture Notes in Computer Science
925, Berlin: Springer.

[30] ———. 2000. Type classes with functional dependencies. In Program-
ming Languages and Systems: Proceedings of ESOP 2000, 9th European
Symposium on Programming, ed. Gert Smolka, 230–244. Lecture Notes in
Computer Science 1782, Berlin: Springer.

[31] Kennedy, Andrew. 1995. Programming languages and dimensions. Ph.D.
thesis, University of Cambridge.

[32] Kiselyov, Oleg. 2008. Formatted IO as an embedded DSL: the initial view.
http://okmij.org/ftp/typed-formatting/#DSL-In.

[33] Kiselyov, Oleg, and Chung-chieh Shan. 2007. Lightweight static resources:
Sexy types for embedded and systems programming. In Draft Proceedings
of TFP 2007: 6th Symposium on Trends in Functional Programming, ed.
Marco T. Morazán and Henrik Nilsson. Tech. Rep. TR-SHU-CS-2007-04-1,
Department of Mathematics and Computer Science, Seton Hall University.

[34] Krishnamurthi, Shriram, Matthias Felleisen, and Daniel P. Friedman. 1998.
Synthesizing object-oriented and functional design to promote re-use. In
Proceedings of ECCOP’98: 12th European conference on object-oriented
programming, ed. Eric Jul, 91–113. Lecture Notes in Computer Science
1445, Berlin: Springer.

[35] Meyer, Albert R., and Mitchell Wand. 1985. Continuation semantics in
typed lambda-calculi (summary). In Logics of programs, ed. Rohit Parikh,
219–224. Lecture Notes in Computer Science 193, Berlin: Springer.

[36] Michie, Donald. 1968. “Memo” functions and machine learning. Nature
218:19–22.

31

[37] Neubauer, Matthias, and Peter Thiemann. 2004. An implementation of
session types. In Practical Aspects of Declarative Languages: 6th Inter-
national Symposium, PADL 2004, ed. Bharat Jayaraman, 56–70. Lecture
Notes in Computer Science 3057, Berlin: Springer.

[38] Peyton Jones, Simon L., Dimitrios Vytiniotis, Stephanie Weirich, and Ge-
offrey Alan Washburn. 2006. Simple unification-based type inference for
GADTs. In ICFP ’06: Proc. ACM international conference on functional
programming, 50–61. New York: ACM Press.

[39] Pucella, Riccardo, and Jesse Tov. 2008. Haskell session types with (almost)
no class. In [16], 25–36.

[40] Reynolds, John C. 1972. Definitional interpreters for higher-order program-
ming languages. In Proceedings of the ACM National Conference, vol. 2,
717–740. New York: ACM Press. Reprinted as [41].

[41] ———. 1998. Definitional interpreters for higher-order programming lan-
guages. Higher-Order and Symbolic Computation 11(4):363–397.

[42] Sackman, Matthew. 2008. A tutorial for session types. http://www.
wellquite.org/sessions/tutorial_1.html.

[43] Schrijvers, Tom, Simon Peyton Jones, Manuel Chakravarty, and Martin
Sulzmann. 2008. Type checking with open type functions. In [25], 51–62.

[44] Sheard, Tim. 2004. Languages of the future. Onward Track, OOPSLA’04.
Reprinted in: ACM SIGPLAN Notices, Dec. 2004. 39:116–119. OOPSLA
Companion Volume.

[45] ———. 2006. Generic programming programming in Omega. In Datatype-
generic programming, ed. Roland Backhouse, Jeremy Gibbons, Ralf Hinze,
and Johan Jeuring, vol. 4719 of Lecture Notes in Computer Science, 258–
284. Springer.

[46] Sheard, Tim, and Nathan Linger. 2007. Programming in Omega. In 2nd
Central European Functional Programming School, ed. Zoltán Horváth, Ri-
nus Plasmeijer, Anna Soós, and Viktória Zsók, vol. 5161 of Lecture Notes
in Computer Science, 158–227. Springer.

[47] Sheard, Tim, and Emir Pasalic. 2004. Meta-programming with built-in
type equality. In Proceedings of the fourth international workshop on logical
frameworks and meta-languages (LFM’04).

[48] Siek, Jeremy, Lie-Quan Lee, and Andrew Lumsdaine. 2001. The Boost
Graph Library User Guide and Reference Manual. Addison-Wesley.

32

Appendices

These appendices will not appear in the published paper, only in the online
version.

A The Rules

Here we summarise some rules governing type families. The reader may find
more details elsewhere [5–7, 43].

The indices of a type family are the arguments that appear to the left of the
“::” in its kind signature.

1. Like ordinary Haskell type synonyms, a type family must always be sat-
urated; that is, it must be applied to all its type indices. For example:

data D m = MkD (m Int) -- So D :: (*->*) -> *

type family T a :: * -- So T :: * -> *
f1 :: D T -- ILLEGAL (unsaturated)

type family S a :: * -> * -- So S :: * -> * -> *
f2 :: D (S a) -- OK (saturated)

type family R a b :: * -- So R :: * -> * -> *
f3 :: D (R a) -- ILLEGAL (unsaturated)

This constraint does not apply to data families.

2. In a type instance or data instance declaration, any arguments that
are not type indices must be type variables. For example:

type family T a :: * -> *
type instance T Int b = Int -- OK
type instance T Int Bool = Int -- Not allowed
type instance T a Bool = Int -- Not allowed

3. In an associated type or data declaration (i.e. one appearing nested in
a class declaration), the type indices must be a permutation of one or
more of the class variables. For example:

class C a b where
type T1 a :: * -- OK
type T2 b :: * -- OK
type T3 b a :: * -- OK
type T4 a c :: * -- Not OK; mentions ’c’
type T5 a :: * -> * -- OK

4. There is no difference between a type family declared as an associated
type of a class declaration, and a type family declared at top level. For
example, the following are equivalent:

33

class C1 a b where | type family T2 a :: *
type T1 a :: * | class C2 a b where
op :: a -> b -> Int | op :: a -> b -> Int

instance C1 Int Int where | type instance T2 Int = Bool
type T1 Int = Bool | instance C2 Int Int where
op = ... | op = ...

B Pitfalls

Type functions are powerful, but they can give rise to unexpected errors. In
this appendix we review some of the more common cases.

B.1 Ambiguity

One pitfall of type functions commonly mentioned on Haskell mailing lists is a
false expectation that they are injective. As we discussed in Section 2.4, type
functions are, in general, not injective: if F is a type family, then the fact F t1
is the same as F t2 does not imply that t1 and t2 are the same (that fact is
easy to see for the type function mapping any type to Int). Therefore, the
type checker cannot use the equality of F t1 and F t2 to equate t1 and t2.
The pitfall of the false expectation of injectivity of type functions can be quite
subtle. Consider the following example (abstracted from a recent message on
the Haskell-Cafe mailing list):

class C a where
type F a :: *
inj :: a -> F a
prj :: F a -> a

-- bar :: (C a) => F a -> F a
bar x = inj (prj x)

That code type-checks; the inferred type signature is given in the comments.
The signature agrees with our expectation. If we uncomment the signature, the
type-checking fails:

foo.hs:8:17:
Couldn’t match expected type ‘F a’ against inferred type ‘F a1’
In the first argument of ‘prj’, namely ‘x’

It seems GHC does not like the signature it itself inferred! In fact, the bug here
is that GHC should not have accepted the signature-less bar in the first place,
because bar embodies an unresolvable ambiguity. To see the problem clearly,
let us assume the following instances of the class C:

instance C Int where
type F Int = Int
inj = id
prj = id

34

instance C Char where
type F Char = Int
inj _ = 0
prj _ = ’a’

Given the application bar (1::Int), which instance of prj should the compiler
choose: prj:: Int -> Int or prj:: Int -> Char? The choice determines the
result of bar 1: 1 or 0, respectively. The application bar (1::Int) provides
no information to help make this choice; in fact, no context of bar usage can
resolve the ambiguity. The function bar is an instance of the infamous read-show
problem, the composition show . read, which is just as ambiguous.

B.2 Lack of inversion

Even if a type function (defined as a type family rather than a data family)
turns out to be injective, GHC will not notice that fact; in particular, GHC
will not try to invert such a type function. For example, we may easily define
addition of type-level naturals (§5.1) as a type family

type family Plus m n
type instance Plus Zero n = n
type instance Plus (Succ m) n = Succ (Plus m n)

plus :: m -> n -> Plus m n
plus = undefined

tplus = plus (undefined::Two) (undefined::Three)

The expression tplus has the monomorphic inferred type Plus Two Three
(with no constraints attached), and toInt tplus evaluates to 5. One may
expect that a related tplus’

tplus’ x = if True then plus x (undefined::One) else tplus

will have a monomorphic type, too. However, GHC infers a polymorphic type
with a type equality constraint:

tplus’ :: (Succ (Succ (Succ Two)) ~ Plus m One) => m -> Plus m One

There is only a single type m (viz. Four) that satisfies the constraint; one might
hope that GHC would figure it out and resolve the constraint. One should
keep in mind that GHC is not a general-purpose solver for arithmetic and other
constraints. The type families like GCD and Plus along with the type equality let
us write types with arbitrary arithmetic constraints over unbounded domain of
type-level natural numbers. Solving these constraints is an undecidable problem.

C Sprintf revisited

In this appendix we explore yet another variant on sprintf, this one including
higher order type-level functions. Recall that sprintf should take as an argu-
ment a format descriptor and zero or more additional arguments. The number

35

and the type of the additional arguments – the values to format – depend on the
type of the format descriptor. The function sprintf should return the format-
ted string. A format descriptor is an expression built by connecting primitive
descriptors such as lit "str" and int with a descriptor composition operator
(^). For example,

sprintf (lit "day") -- Result: "day",
sprintf (lit "day" ^ lit "s") -- Result: "days",
sprintf (lit "day " ^ int) 3 -- Result: "day 3",
sprintf (int ^ lit " day" ^ lit "s") 3 -- Result: "3 days"

The specification immediately suggests the following naive implementation.
Since the format descriptor lit "str" denotes outputting (as the result of
sprintf) of the string str, lit "str" may just as well be str itself. Thus
lit "str" has the type String. The function sprintf is the identity then. The
descriptor int denotes receiving an integer and outputting it as a string, hence
int could be implemented as a function show of the type Int->String. The
composition of the format descriptors should therefore concatenate the outputs
of the descriptors. That is easy to do if the two descriptors are lit "str1"
and lit "str2", in which case we just concatenate str1 and str2. When we
compose int and lit "str1", we would like the composite format descriptor
to be \x -> show x ++ "str". Thus, the left-associative composition of two
descriptors is type-directed:

fmt1 ^ fmt2 = fmt1 ++ fmt2
when fmt1 :: String and fmt2 :: String

fmt1 ^ fmt2 = \x -> fmt1 x ++ fmt2
when fmt1 :: Int -> String and fmt2 :: String

fmt1 ^ fmt2 = fmt1 ++ \x -> fmt2 x
when fmt1 :: String and fmt2 :: Int -> String

...

We have to analyse and induct on the types of both arguments of (^).
We can change the representation of descriptors so that we need case analysis

on the type of only one argument of (^). In the naive implementation, format
descriptors have the general type t1 -> t2 -> ... -> String. The composi-
tion of the two descriptors have to ‘dive’ under the layers of t1 -> t2 -> ...
in order to concatenate the underlying Strings – for both descriptors. Let us
change the implementation: let lit "str" be a function that takes the current
output as the string and appends to it str:

lit :: String -> (String -> String)
lit str = \s -> s ++ str

Likewise, int should receive the output so far, obtain an integer and return the
new output, with the formatted integer appended to the current output:

int :: String -> Int -> String
int = \s -> \x -> s ++ show x

36

Thus the formatters have the general type String -> t1 -> t2 -> ... -> String.
With this implementation of the formatter, the composition of formatters can
be informally defined as

fmt1 ^ fmt2 = \s -> fmt2 (fmt1 s)
when fmt1 :: String -> String and fmt2 :: String -> t

fmt1 ^ fmt2 = \s -> \x -> fmt2 (fmt1 s x)
when fmt1 :: String -> Int -> String and fmt2 :: String -> t

...

The formatter composition operation (^) needs case analysis on the type of
only one argument, which is straightforward with the help of an ordinary, one-
parameter type class. Here is the first attempt:

class FCompose a where
(^) :: (String -> a) -> (String -> b) -> (String -> ???)

What is the return type of (^) should be however? It is obvious that ??? must
depend on both a and b. The informal definition shows that if a is String, ???
is just b. If a is Int->String however, then ??? is Int -> b. In general, if a is
t1 -> t2 -> ... String, then ??? must be t1 -> t2 -> ... b. We can try
to use associated type synonyms to express such a result type:

class FCompose a where
type Result a :: * -> *
(^) :: (String -> a) -> (String -> b) -> (String -> Result a b)

instance FCompose String where
type Result String b = b
(^) f1 f2 = ...

instance FCompose c => FCompose (a -> c) where
type Result (a -> c) b = a -> Result c b
(^) f1 f2 = ...

Alas, for technical reasons this attempt doesn’t work: Result a is defined as
having one type parameter and yielding an existing type (constructor or a func-
tion) of the kind * -> *. After all, Result is the type synonym. Therefore, the
definition of Result associated with the instance FCompose String is invalid as
Result String is not defined to be a synonym of an existing type constructor
or a function of the kind * -> *. To get around that, we resort to type families,
which are free from such restrictions. Here is the final, working implementation:

data I
class FCompose a where
type Result a
(^) :: (String -> a) -> (String -> b) ->

(String -> TApply (Result a) b)

37

instance FCompose String where
type Result String = I
(^) f1 f2 = \s -> f2 (f1 s)

instance FCompose c => FCompose (a -> c) where
type Result (a -> c) = a->Result c
(^) f1 f2 = \s -> \x -> ((\s -> f1 s x) ^ f2) s

The associated type synonym Result a ‘computes’ a type function (more pre-
cisely, a functor) mapping a type b to a type containing b. To be precise,
Result a is a type that represents a functor. The language of representations
is trivial: the type I represents the identity functor, and the type T1 -> I repre-
sents the functor that takes a type b to a type T1 -> b. In other words, T1 -> F
represents the functional composition of the functors (T1 ->) and F. The type
family TApply F x interprets the mini-language of functor representations and
performs the application of the corresponding functor to a type x:

type family TApply functor x
type instance TApply I x = x
type instance TApply (a -> c) x = a -> TApply c x

Essentially, TApply is a higher-order type function.
The function sprintf is then a simple wrapper over the format descriptor:

sprintf:: (String -> t) -> t
sprintf fmt = fmt ""

38

