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Preface

This volume contains the papers presented at the workshop ADDCT 2013: Au-
tomated Deduction: Decidability, Complexity, Tractability, held in Lake Placid
on June 10, 2013, affiliated with the 24th Conference on Automated Deduction
(CADE 24). ADDCT 2013 is the third of the ADDCT workshops: the previous
workshops were ADDCT 2007 (held in Bremen, together with CADE 21) and
ADDCT 2009 (held in Montreal together with CADE 22).

The goal of ADDCT is to bring together researchers interested in

– Decidability, in particular decision procedures based on logical calculi such
as: resolution, rewriting, tableaux, sequent calculi, or natural deduction, but
also decidability in combinations of logical theories;

– Complexity, especially complexity analysis for fragments of first- (or higher)
order logic and complexity analysis for combinations of logical theories (in-
cluding parameterized complexity results);

– Tractability (in logic, automated reasoning, algebra, ...);
– Application domains for which complexity issues are essential (verification,

security, databases, ontologies, ...).

With the development of computer science these problems are becoming ex-
tremely important. Although general logical formalisms (such as predicate logic
or number theory) are undecidable, decidable theories or decidable fragments
thereof (sometimes even with low complexity) often occur in mathematics, in
program verification, in the verification of reactive, real time or hybrid sys-
tems, as well as in databases and ontologies. It is therefore important to identify
such decidable fragments and design efficient decision procedures for them. It
is equally important to have uniform methods (such as resolution, rewriting,
tableaux, sequent calculi, ...) which can be tuned to provide algorithms with
optimal complexity.

The programme of ADDCT 2013 includes one invited talk, by Vijay Ganesh, on
decidability and undecidability results for word equations with length and regu-
lar expression constraints and 5 contributed papers. We allowed the possibility
of submitting to ADDCT not only original papers, but also presentation-only
papers, describing work presented in papers which are already published. We
thank the programme committee and the additional reviewers for their careful
referee reports.

June 2013

Silvio Ghilardi Viorica Sofronie-Stokkermans
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Automatic Decidability for Theories with
Counting Operators

(Presentation-only paper)

Elena Tushkanova1,2, Christophe Ringeissen1, Alain Giorgetti1,2, and
Olga Kouchnarenko1,2

1 Inria, Villers-les-Nancy, F-54600, France
2 FEMTO-ST Institute (UMR 6174), University of Franche-Comté,

Besançon, F-25030, France

The full paper will appear in the proceedings of the 24th
International Conference on Rewriting Techniques and
Applications (RTA 2013), published as LIPIcs proceed-
ings, http://www.dagstuhl.de/en/publications/lipics

1 Introduction

Decision procedures for satisfiability modulo background theories of classical
datatypes are at the core of many state-of-the-art verification tools. Designing
and implementing these satisfiability procedures remains a very hard task. To
help the researcher with this time-consuming task, an important approach based
on rewriting has been investigated in the last decade [2, 1]. The rewriting-based
approach allows building satisfiability procedures in a flexible way by using a
general calculus for automated deduction, namely the paramodulation calculus [9]
(also called superposition calculus). The paramodulation calculus is a refutation-
complete inference system at the core of all equational theorem provers. In general
this calculus provides a semi-decision procedure that halts on unsatisfiable inputs
by generating an empty clause, but may not terminate on satisfiable ones. However,
it also terminates on satisfiable inputs for some theories axiomatising standard
datatypes such as arrays, lists, etc, and thus provides a decision procedure for
these theories. A classical termination proof consists in considering the finitely
many cases of inputs made of the (finitely many) axioms and any set of ground
flat literals. This proof can be done by hand, by analysing the finitely many forms
of clauses generated by saturation, but the process is tedious and error-prone. To
simplify this process, a schematic paramodulation calculus has been developed [5]
to build the schematic form of the saturations. It can be seen as an abstraction
of the paramodulation calculus: If it halts on one given abstract input, then the
paramodulation calculus halts for all the corresponding concrete inputs. More
generally, schematic paramodulation is a fundamental tool to check important
properties related to decidability and combinability [6].

To ensure efficiency, it is very useful to have built-in axioms in the calculus,
and so to design paramodulation calculi modulo theories. This is particularly
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important for arithmetic fragments due to the ubiquity of arithmetics in ap-
plications of formal methods. For instance, paramodulation calculi have been
developed for Abelian Groups [4, 7] and Integer Offsets [8]. In [8], the termination
of paramodulation modulo Integer Offsets is proved manually. Therefore, there
is an obvious need for a method to automatically prove that an input theory
admits a decision procedure based on paramodulation modulo Integer Offsets.

In this paper, we introduce theoretical underpinnings that allow us to automat-
ically prove the termination of paramodulation modulo Integer Offsets. To this
aim, we design a new schematic paramodulation calculus to describe saturations
modulo Integer Offsets. Our approach requires a new form of schematization
to cope with arithmetic expressions. The interest of schematic paramodulation
relies on a correspondence between a derivation using (concrete) paramodulation
and a derivation using schematic paramodulation: Roughly speaking, the set of
derivations obtained by schematic paramodulation over-approximates the set of
derivations obtained by (concrete) paramodulation.

Our approach has been developed and validated thanks to a proof system [10]
implemented in the rewriting logic-based environment Maude.

2 Paramodulation Calculus

As in [10] we consider only unitary clauses, i.e. clauses composed of at most one
literal. The Unitary Paramodulation Calculus, denoted by UPC [10] corresponds
to the standard paramodulation calculus restricted to the case of unit clauses.

The paramodulation-based calculus UPCI defined in [8] adapts the paramodu-
lation calculus UPC to the theory of Integer Offsets, so that it can serve as a basis
for the design of decision procedures for Integer Offsets extensions. Technically, the
axioms of the theory of Integer Offsets are directly integrated in the simplification
rules of UPCI . The theory of Integer Offsets is axiomatized by the set of axioms
{∀X. s(X) 6= 0, ∀X,Y. s(X) = s(Y )⇒ X = Y , ∀X. X 6= sn(X) for all n ≥ 1}
over the signature ΣI := {0 : int, s : int→ int}. Compared to [3], our theory of
Integer Offsets does not consider the predecessor function. Following [8, Section
5], a possible Integer Offsets extension is the theory LLI of lists with length
whose signature is ΣLLI = {car : lists → elem, cdr : lists → lists, cons :
elem×lists→ lists, len : lists→ int, nil :→ lists, 0 :→ int, s : int→ int}
and whose set of axioms Ax(LLI) is {car(cons(X,Y )) = X, cdr(cons(X,Y )) =
Y, len(cons(X,Y )) = s(len(Y )), cons(X,Y ) 6= nil, len(nil) = 0}.

3 Schematic Paramodulation

The Schematic Unitary Paramodulation Calculus SUPC is an abstraction of
UPC. Indeed, any concrete saturation computed by UPC can be viewed as an
instance of an abstract saturation computed by SUPC [6, Theorem 2]. Hence, if
SUPC halts on one given abstract input, then UPC halts for all the corresponding
concrete inputs. More generally, SUPC is an automated tool to check properties
of UPC such as termination, stable infiniteness and deduction completeness [6].
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SUPC is almost identical to UPC, except that literals are constrained by
conjunctions of atomic constraints of the form const(x) which restricts the instan-
tiation of the variable x by only constants. An implementation of Paramodulation
and Schematic Paramodulation calculi UPC and SUPC is presented in [10].

In the following, we extend the schematic calculus SUPC for UPC to get a
schematic calculus for UPCI , named SUPCI .

4 Schematic Paramodulation Calculus for Integer Offsets

This section introduces a new schematic calculus named SUPCI . It is a schema-
tization of UPCI taking into account the axioms of the theory of Integer Offsets
within a framework based on schematic paramodulation [6, 10].

The theory of Integer Offsets allows us to build arithmetic expressions of the
form sn(t) for n ≥ 1. The idea investigated here is to represent all terms of this
form in a unique way. To this end, we consider a new operator s+ : int→ int
such that s+(t) denotes the infinite set of terms {sn(t) | n ≥ 1}. Let us introduce
the notions of schematic clause and instance of schematic clause handled by
SUPCI . These notions extend the ones used in [6] for the schematization of PC.

Definition 1 (Schematic Clause) A schematic clause is a constrained clause
built over the signature extended with s+. An instance of a schematic clause is
a constraint instance where each occurrence of s+ is replaced by some sn with
n ≥ 1.

The calculus SUPCI takes as input a set of schematic literals, G0, that
represents all possible sets of ground literals given as inputs to UPCI :

G0 = {⊥, x = y ‖ const(x, y), x 6= y ‖ const(x, y), u = s+(v)‖ϕ}
∪
⋃
f∈ΣT

{f(x1, . . . , xn) = x0 ‖ const(x0, x1, . . . , xn)}

where u, v are flat terms of sort int whose variables are all constrained (in ϕ),
and x, y are constrained variables of the same sort.

The calculus SUPCI is depicted in Fig. 1. It re-uses most of the rules of
SUPC – Figs. 1(a) and 1(b) – and complete them with one new contraction rule
named Schematic Deletion and two reduction rules – presented in Fig. 1(c) –
which are simplification rules for Integer Offsets.

Whenever a literal is generated by superposition or simplification, the rewrite
system Rs+ = { s+(s(x)) → s+(x), s(s+(x)) → s+(x), s+(s+(x)) → s+(x) } is
applied eagerly to simplify terms containing s+. The rewrite system Rs+ is also
applied in the Schematic Deletion rule to implement a form of subsumption check
via a morphism π replacing all the occurences of s by s+ (π(s(t)) = s+(π(t)) for
any t, π(x) = x if x is a variable).

It is important to note that SUPCI may diverge without the new Schematic
Deletion rule. To illustrate this point, let us take a look at the theory of
lists with length. In fact, the calculus generates a schematic clause len(a) =
s(len(b))‖const(a, b) which will superpose with a renamed copy of itself, i.e. with
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Superposition
l[u′] ./ r‖ϕ u = t‖ψ

σ(l[t] ./ r‖ϕ ∧ ψ)

if i) σ(u) 6≤ σ(t), ii) σ(l[u′]) 6≤ σ(r), and
iii) u′ is not an unconstrained variable.

Reflection
u′ 6= u‖ψ
⊥

if σ(ψ) is satisfiable.

Above, u and u′ are unifiable and σ is the most general unifier of u and u′.

(a) Schematic expansion inference rules

Subsumption
S ∪ {L‖ψ,L′‖ψ′}

S ∪ {L‖ψ}

if a) L ∈ Ax(T ), ψ = ∅ and L′ is an instance of L; or b)
L′ = σ(L), ψ′ = σ(ψ), where σ is a renaming or a mapping
from constrained variables to constrained variables.

Simplification
S ∪ {C[l′]‖ϕ, l = r}
S ∪ {C[σ(r)]‖ϕ, l = r}

if i) l = r ∈ Ax(T ), ii) l′ = σ(l), iii) σ(l) > σ(r), and
iv) C[l′] > (σ(l) = σ(r)).

Tautology
S ∪ {u = u‖ϕ}

S

Deletion
S ∪ {L‖ϕ}

S
if ϕ is unsatisfiable.

Schematic Del.
S ∪ {C ′‖ϕ,C[s+(t)]‖ψ}

S ∪ {C[s+(t)]‖ψ}

if σ(π(C ′) ↓Rs+) = C[s+(t)], σ(ϕ) = ψ, for a renaming σ.

(b) Schematic contraction inference rules

R1
S ∪ {s(u) = s(v)‖ϕ}
S ∪ {u = v‖ϕ}

R2
S ∪ {s(u) = t‖ϕ, s(v) = t‖ψ}
S ∪ {s(v) = t‖ψ, u = v‖ψ ∧ ϕ}

if s(u) > t, s(v) > t, u > v

Above, all the variables in u, v, t are constrained.

(c) Schematic ground reduction inference rules

Fig. 1: Inference rules of SUPCI
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len(a′) = s(len(b′)) ‖const(a′, b′) to generate a schematic clause of a new form
len(a) = s(s(len(b′))) ‖const(a, b′). Without the Schematic Deletion rule this pro-
cess continues to generate deeper and deeper schematic clauses so that SUPCI will
diverge. The Schematic Deletion rule applies to the theory of lists with length since
G0 already contains the non-flat schematic literal len(a) = s+(len(b))‖const(a, b).

As in [5, 6], we are interested in satisfying the following properties:

– Any clause in a saturation generated by the paramodulation calculus with any
possible input is an instance of a schematic clause in a saturation generated
by the schematic paramodulation calculus with the input G0.

– The termination of the schematic paramodulation calculus with the input
G0 implies the termination of the paramodulation calculus with any possible
input.

The new form of schematization introduced for arithmetic expressions requires
adapting the proofs done for the standard case [11]. Our schematic paramodulation
calculus for Integer Offsets provides us with an automatic proof method for the
theories considered in [8], where the termination proofs are done manually.
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On the conjunctive fragments of theory of linear
arithmetic

Pavlos Eirinakis1 ?, Salvatore Ruggieri2, K. Subramani3 ∗, and Piotr
Wojciechowski3 ∗

1DMST, Athens University of Economics and Business
peir@aueb.gr
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Abstract. A discussion of recent developments on the conjunctive frag-
ments of theory of linear arithmetic.

1 Introduction

In this paper, we present recent developments on the conjunctive fragments of
theory of linear arithmetic. Quantified linear programming [1, 2] is the problem of
checking whether a linear system is satisfiable with respect to a given quantifier
string. Hence, it represents a generalization of linear programming. Hence, Quan-
tified Linear Program (QLP) is a set of linear inequalities, where all variables
are either existentially or universally quantified. By extending the quantification
of variables to implications of two linear systems, we explore Quantified Linear
Implications (QLIs) [3–5]. QLIs correspond to inclusion queries of polyhedral
solution sets of two linear systems with respect to a given quantifier string.

QLPs represent a rich language that is ideal for expressing schedulability
specifications in real-time scheduling [6–9]. In real-time scheduling, however, it
may be the case that the dispatcher has already obtained a schedule (solution)
but then some constraints are slightly altered. QLIs can be then utilized to
decide whether the dispatcher needs to recompute a solution or can still use
the current one. Moreover, QLIs can be used to model reactive systems [10, 11],
where the universally quantified variables represent the environmental input,
while the existentially quantified variables represent the system’s response.

2 Quantified Linear Programming

A QLP is a linear system whose variables are either existentially or universally
(with bounds) quantified according to a given quantifier string:

∃x1 ∀y1 ∈ [l1,u1] . . . ∃xn ∀yn ∈ [ln,un] A · x + N · y ≤ b (1)

? This research was supported in part by the National Science Foundation through
Award CCF-0827397 and Award CNS-0849735.
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(NP-complete)

〈1, ∃,BR〉
(P)

〈1, ∃,RB〉
(P)

〈1,∃,BB〉
(NP-complete)

Fig. 1. Complexity of ∃∀ classes of QLIs. Arrows denote inclusions.

where x1 . . .xn is a partition of x with, possibly, x1 empty; y1 . . .yn is a partition
of y with, possibly, yn empty; and li, ui are lower and upper bounds in < for
yi, i = 1, . . . , n.

The Fourier-Motzkin existential quantifier elimination method and a univer-
sal quantifier elimination method have been employed to provide a method for
deciding QLPs [2].

Theorem 1. Deciding a QLP of the form (1) is in PSPACE.

The special case of E-QLP problems, which are of the form ∃y ∀x ∈ [l,u] Ax+
N · y ≤ b, are solvable in polynomial time [2, Theorem 8.1]. Another special
case is F-QLP problems, which are of the form ∀y ∈ [l,u] ∃x A ·x + N ·y ≤ b.
Deciding an F-QLP is coNP-complete [2, Theorem 8.2].

3 Quantified Linear Implication

QLIs extend the notion of inclusion of linear systems to arbitrary quantifiers:

∃x1 ∀y1 . . . ∃xn ∀yn [A · x + N · y ≤ b→ C · x + M · y ≤ d] (2)

where x1 . . .xn and y1 . . .yn are partitions of x and y respectively, and where
x1 and/or yn may be empty. The following result can be obtained through a
reduction from the generic Q3SAT problem.

Theorem 2. Deciding a QLI of the form (2) is PSPACE-hard.

Let Q(x,y) denote the quantifier string, namely ∃x1 ∀y1 . . . ∃xn ∀yn in the
QLI (2). A nomenclature is introduced in [3] to represent the classes of QLIs.
Consider a triple 〈A,Q,R〉. Let A denote the number of quantifier alternations in
Q(x,y) and Q the first quantifier of Q(x,y). Also, let R be an (A+1)-character
string, specifying for each quantified set of variables in Q(x,y) whether they
appear on the Left, on the Right, or on Both sides of the implication.
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In [12], problem 〈0,∀,B〉 is shown in P by reducing the problem to a finite
number of linear programs, which are in P by [13]. Various classes of 1- and
2-quantifier alternation QLIs are examined in [3–5]. Indicatively, we present the
class of 1-quantifier alternation QLIs starting with ∃ in Figure 1. The case of
1-quantifier alternation QLIs starting with ∀ is shown to be symmetric (see [5,
Figure 4]).

Finally, let us examine the case of k alternations of quantifiers. In [5], problem
〈k, ∃,Bk+1〉 with k odd is shown to be ΣP

k -hard, while problem 〈k,∀,Bk+1〉 with
k even is shown to be ΠP

k -hard, where Bk+1 denotes the string B . . .B︸ ︷︷ ︸
k+1

.
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