CADE-24

24th International Conference on Automated Deduction
Lake Placid, New York, 9-14 June, 2013

Workshop Program

4 5L SOMFEREMEE O RUTCAIATED DEOUCRIOA
LAKE FLACID. NEW YORE | JUNE 3-04, 2013

JEAN-CHRISTOPHE FILLIATRE =

GREG MORRISETT
ALAN ROBINSON

INVITED SPEAKERS ek LT

MATARAIAN SHANKAR
DOUGLAS R. SMITH

Automated Deduction: Decidability,
Complexity, Tractability (ADDCT)

Silvio Ghilardi, Ulrike Sattler,

Viorica Sofronie-Stokkermans, Ashish Tiwari

10 June 2013

ii

Preface

This volume contains the papers presented at the workshop ADDCT 2013: Au-
tomated Deduction: Decidability, Complexity, Tractability, held in Lake Placid
on June 10, 2013, affiliated with the 24th Conference on Automated Deduction
(CADE 24). ADDCT 2013 is the third of the ADDCT workshops: the previous
workshops were ADDCT 2007 (held in Bremen, together with CADE 21) and
ADDCT 2009 (held in Montreal together with CADE 22).

The goal of ADDCT is to bring together researchers interested in

— Decidability, in particular decision procedures based on logical calculi such
as: resolution, rewriting, tableaux, sequent calculi, or natural deduction, but
also decidability in combinations of logical theories;

— Complezity, especially complexity analysis for fragments of first- (or higher)
order logic and complexity analysis for combinations of logical theories (in-
cluding parameterized complexity results);

— Tractability (in logic, automated reasoning, algebra, ...);

— Application domains for which complexity issues are essential (verification,
security, databases, ontologies, ...).

With the development of computer science these problems are becoming ex-
tremely important. Although general logical formalisms (such as predicate logic
or number theory) are undecidable, decidable theories or decidable fragments
thereof (sometimes even with low complexity) often occur in mathematics, in
program verification, in the verification of reactive, real time or hybrid sys-
tems, as well as in databases and ontologies. It is therefore important to identify
such decidable fragments and design efficient decision procedures for them. It
is equally important to have uniform methods (such as resolution, rewriting,
tableaux, sequent calculi, ...) which can be tuned to provide algorithms with
optimal complexity.

The programme of ADDCT 2013 includes one invited talk, by Vijay Ganesh, on
decidability and undecidability results for word equations with length and regu-
lar expression constraints and 5 contributed papers. We allowed the possibility
of submitting to ADDCT not only original papers, but also presentation-only
papers, describing work presented in papers which are already published. We
thank the programme committee and the additional reviewers for their careful
referee reports.

June 2013

Silvio Ghilardi Viorica Sofronie-Stokkermans
Universita degli Studi di Milano University Koblenz-Landau and
Max-Planck-Institut fiir Informatik, Saarbriicken

Ulrike Sattler Ashish Tiwar:

University of Manchester Stanford Research International

The workshop organizers greatly benefited from using the FasyChair system.

Conference Organization

Programme Chairs

Silvio Ghilardi

Ulrike Sattler

Viorica Sofronie-Stokkermans
Ashish Tiwari

Programme Committee

Carlos Areces

Franz Baader

Peter Baumgartner
Maria Paola Bonacina
Christian Fermiiller
Silvio Ghilardi

Rajeev Gore

Ullrich Hustadt
Carsten Lutz
Christopher Lynch
Felix Klaedtke

Silvio Ranise

Ulrike Sattler

Renate Schmidt
Viorica Sofronie-Stokkermans
Ashish Tiwari

Luca Vigano

External Reviewers

Jinbo Huang
Barbara Morawska

Table of Contents

(Un)Decidability Results for Word Equations with Length and Regular

Expression Constraints (invited talk)
Vijay Ganesh, Mia Minnes, Armando Solar-Lezama and Martin Ri-
nard

Congruence closure with ACI function symbols
Tanji Hu and Robert Givan

Automatic Decidability for Theories with Counting Operators
Elena Tushkanova, Christophe Ringeissen, Alain Giorgetti and Olga
Kouchnarenko

Utilizing Higher-order Unifiability Algorithms in the Resolution Calculus.
Tomer Libal

Exact Global Optimization on Demand
Leonardo De Moura and Grant Passmore

On the conjunctive fragments of theory of linear arithmetic
Pavlos Eirinakis, Salvatore Ruggieri, K. Subramani and Piotr Woj-
ciechowski

Author Indexo e

vi

(Un)Decidability Results for Word Equations with Length and
Regular Expression Constraints

Vijay Ganesh', Mia Minnes*, Armando Solar-Lezama' and Martin Rinard®

TMassachusetts Institute of Technology
{vganesh, asolar, rinard} @csail.mit.edu
“University of California, San Diego
minnes@math.ucsd.edu

Abstract. We prove several decidability and undecidability results for the satisfiability and validity
problems for languages that can express solutions to word equations with length constraints. The atomic
formulas over this language are equality over string terms (word equations), linear inequality over the
length function (length constraints), and membership in regular sets. These questions are important
in logic, program analysis, and formal verification. Variants of these questions have been studied for
many decades by mathematicians. More recently, practical satisfiability procedures (aka SMT solvers)
for these formulas have become increasingly important in the context of security analysis for string-
manipulating programs such as web applications.

We prove three main theorems. First, we give a new proof of undecidability for the validity problem
for the set of sentences written as a Y3 quantifier alternation applied to positive word equations. A
corollary of this undecidability result is that this set is undecidable even with sentences with at most
two occurrences of a string variable. Second, we consider Boolean combinations of quantifier-free for-
mulas constructed out of word equations and length constraints. We show that if word equations can
be converted to a selved form, a form relevant in practice, then the satisfiability problem for Boolean
combinations of word equations and length constraints is decidable. Third, we show that the satisfiabil-
ity problem for quantifier-free formulas over word equations in regular solved form, length constraints,
and the membership predicate over regular expressions is also decidable.

1 Introduction

The complexity of the satisfiability problem for formulas over finite-length strings (theories of strings)
has long been studied, including by Quine [23], Post, Markov and Matiyasevich [17], Makanin [15], and
Plandowski [12,20,21]. While much progress has been made, many questions remain open especially when
the language is enriched with new predicates.

Formulas over strings have become important in the context of automated bugfinding [8,25], and anal-
ysis of database/web applications [7, 14,27]. These program analysis and bugfinding tools read string-
manipulation programs and generate formulas expressing their results. These formulas contain equations
over string constants and variables, membership queries over regular expressions, and inequalities between
string lengths. In practice, formulas of this form have been solved by off-the-shelf satisfiability procedures
such as HAMPI [8, 13] or Kaluza [25]. In this context, a deeper understanding of the theoretical aspects of
the satisfiability problem for this class of formulas may be useful in practice.

Problem Statement: We address three problems. First, what is a boundary for decidability for fragments
of the theory of word equations? Namely, is the ¥3-fragment of the theory of word equations decidable?
Second, is the satisfiability problem for quantifier-free formulas over word equations and the length function
decidable under some minimal practical conditions? Third, is the satisfiability problem for quantifier-free
formulas over word equations, the length function, and regular expressions decidable under some minimal
practical conditions?

The question of whether the satisfiability problem for the quantifier-free theory of word equations and
length constraints is decidable has remained open for several decades. Our decidability results are a partial

and conditional solution. Matiyasevich [18] observed the relevance of this question to a novel resolution
of Hilbert’s Tenth Problem. In particular, he showed that if the satisfiability problem for the quantifier-
free theory of word equations and length constraints is undecidable, then it gives us a new way to prove
Matiyasevich’s Theorem (which resolved the famous problem) [17, 18].

Summary of Contributions:

1. We show that the validity problem (decision problem) for the set of sentences written as a ¥ quantifier
alternation applied to positive word equations (i.e., AND-OR combination of word equations without
any negation) is undecidable. (Section 3)

2. We show that if word equations can be converted to a solved form then the satisfiability problem for
Boolean combinations of word equations and length constraints is decidable. (Section 4)

3. The above-mentioned decidability result has immediate practical impact for applications such as bug-
finding in JavaScript and PHP programs. We empirically studied the word equations in the formulas
generated by the Kudzu JavaScript bugfinding tool [25] and verified that most word equations in such
formulas are either already in solved form or can be automatically and easily converted into one. (Sec-
tion 4). We further show that the satisfiability problem for quantifier-free formulas constructed out of
Boolean combinations of word equations in regular solved form with length constraints and the mem-
bership predicate for regular sets is also decidable. This is the first such decidability result for this set
of formulas. (Section 5)

We now outline the layout of the rest of the paper. In Section 2 we define a theory of word equations,
length constraints, and regular expressions. In Section 3 we prove the undecidability of the theory of ¥3
sentences over positive word equations. In Section 4 (resp. Section 5) we give a conditional decidability
result for the satisfiability problem for the quantifier-free theory of word equations and length constraints
(resp. word equations, length constraints, and regular expressions). Finally, in Section 6 we provide a com-
prehensive overview of the decidability/undecidability results for theories of strings over the last several
decades.

2 Preliminaries

2.1 Syntax

Variables: We fix a disjoint two-sorted set of variables var = vary, U var;,; vary, consists of string
variables, denoted X, ¥, S, ... and var,, consists of integer variables, denoted m,n,

Constants: We also fix a two-sorted set of constants Con = Cong, U Con;,,. Moreover, Cong, € 2* for
some finite alphabet, 2, whose elements are denoted f, g, Elements of Cony, will be referred to as string
constants or strings. Elements of Con,,, are nonnegative integers. The empty string is represented by e.
Terms: Terms may be string terms or length terms. A string term (t,, in Figure 1) is either an element of
vary,, an element of Cong,, or a concatenation of string terms (denoted by the function concat or inter-
changeably by -). A length term (., in Figure 1) is an element of var;,, an element of Con,,,, the length
function applied to a string term, a constant integer multiple of a length term, or a sum of length terms.
Atomic Formulas: There are three types of atomic formulas: (1) word equations (A,,pgen), (2) length con-
straints (Ajengn), or (3) membership in a set defined by a regular expression (A ,.geyp). Regular expressions
are defined inductively, where constants and the empty string form the base case, and the operations of
concatenation, alternation, and Kleene star are used to build up more complicated expressions (see details
in [10]). Regular expressions may not contain variables.

Formulas: Formulas are defined inductively over atomic formulas (see Figure 1). We include quantifiers of
two kinds: over string variables and over integer variables.

Formula Nomenclature: We now establish notation for the classes of formulas we will analyze. Define
Li’;’r to be the first-order two-sorted language over which the formulas described above (Figure 1) are

F = Atomic | FAF | FVF | =F
| A F(x) | YxF(x)

Atomic = Auwrdt‘qn I Afcngm I Ar«g«.\p

Au-ord«qn 5= e = tar

Apength "= e S € where ¢ € Con;,

Avpgerp = by ERE where RE is a regular expression
Lar =a | X | concat(ty,...ty) where a € Cony,, & X € vary,

Hion s=mo | v | len(ty) | X1 ci* f,;«n where m, n, ¢; € Cong, & v € vary,

Fig. 1. The syntax of £}, -formulas.

constructed. This language contains word equations, length constraints, and membership in given regular
sets. The superscript 1 in .£1 . denotes that this language allows quantifiers, and the subscripts [, e, r stand
for “length”, “equation”, and “regular expressions” (respectively). Let .£1 be the analogous set of first-
order formulas restricted to word equations and length constraints as lhe only atomic formulas, and let
L! be the collection of formulas whose only atomic formulas are word equations. Define LE’M_ to be the
set of quantifier-free £}, formulas. Similarly, £?, and L7 are the quantifier-free versions of £!, and L,
respectively.

Recall that a formula is in prenex normal form if all quantifiers appear at the front of the expression:
that is, the formula has a string of quantifiers and then a Boolean combination of atomic formulas. It is a
standard result (see, for example [6]) that any first-order formula can be translated into prenex normal form.
We therefore assume that all formulas are given in this form. Intuitively, a variable is free in a formula if it
is not quantified. For example, in the formula ¥yé(y, x), the variable y is bound while x is free. For a full
inductive definition, see [6]. A formula with no free variables is called a sentence.

2.2 Semantics and Definitions

For a word, w, len(w) denotes the length of w. For a word equation of the form t; = t,, we refer to 1, as the
left hand side (LHS), and #, as the right hand side (RHS).

We fix a string alphabet, 2. Given an .£1 formula 8, an assignment for 6 (with respect to X)) is a map
from the set of free variables in # to 2*UN (where string variables are mapped to strings and integer variables
are mapped to numbers). Given such an assignment, # can be interpreted as an assertion about 2™ and M.
If this assertion is true, then we say that 6 itself is frue under the assignment. If there is some assignment
which makes 6 true, then 8 is called satisfiable. An .£1 ~formula with no satisfying assignment is called an
unsatisfiable formula. We say two formulas 6, ¢ are eqmvamﬁab!e if # is satisfiable iff ¢ is satisfiable. Note
that this is a broad definition: equisatisfiable formulas may have different numbers of assignments and, in
fact, need not even be from the same language.

The satisfiability problem for a set S of formulas is the problem of deciding whether any given formula
in § is satisfiable or not. We say that the satisfiability problem for a set § of formulas is decidable if there
exists an algorithm (or satisfiability procedure) that solves its satisfiability problem. Satisfiability proce-
dures must have three properties: soundness, completeness, and termination. Soundness and completeness
guarantee that the procedure returns “satisfiable” if and only if the input formula is indeed satisfiable.
Termination means that the procedure halts on all inputs. In a practical implementation, some of these
requirements may be relaxed for the sake of improved typical performance.

Analogous to the definition of the satisfiability problem for formulas, we can define the notion of the
validity problem (aka decision problem) for a set Q of sentences in a language L. The validity problem
for a set Q of sentences is the problem of determining whether a given sentence in Q is true under all
assignments.

2.3 Representation of Solutions to String Formulas

It will be useful to have compact representations of sets of solutions to string formulas. For this, we use
Plandowski’s terminology of unfixed parts [21]. Namely, fix a set of new variables V disjoint from all of X
Con, and var. For 6 an .£1 1 formula, an assignment with unfixed parts is a mapping from the free variables
of € to string elements ol"lhe domain or V. Such an assignment represents the family of solutions to & where
each element of V is consistently replaced by a string element in the domain. (See example 1 below.)

Another tool for compactly encoding many solutions to a formula is the use of integer parameters. If
i is a non-negative integer, we write u' to denote the i-fold concatenation of the string « with itself. An
assignment with integer parameters to the formula 6 is a map from the free variables of # to string elements
of the domain, perhaps with integer parameters occurring in the exponents. (See example 2 below.)

Combining these two representations, we also consider assignments with unfixed parts and integer pa-
rameters. These assignments will provide the general framework for representing solution sets to “"‘:i,ﬂ',r
formulas compactly.

2.4 Examples

We consider some sample formulas and their solution sets. The string alphabet is 2" = {a, b}. (Many of the
examples in this paper are from existing literature by Plandowski et al. [21].)

Example 1 Consider the .{_E formula which is a word equation X = a¥YbZa with three variables (X,Y, Z)
and two string constants (a,b). The set of all solutions to this equation is described by the assignment
X = aybza,Y — v,Z v 7z, where V = {y,z} is the set of unfixed parts. Any choice of v,z € X" yields a
solution to the equation.

Example 2 Consider the equation abX = Xba with one variable X. This is a formula in .[_E. The map
X v aba is a solution. The map X — (ab)a with i = 0 is also an assignment which gives a solution. In
fact, this assignment (with integer parameters) exactly describes all possible solutions of the word equation.

Example 3 Consider the .{_E ., Jormula
abX = Xba A X € (ab | ba)(ab) a A len(X) < 5.

The two solutions to this formula are X = aba and X = ababa.

3 The Undecidability Theorem

In this section we prove that the validity problem for the set of £! sentences over positive word equations
(AND-OR combinations of word equations) whose prenex normal form has ¥ as its quantifier prefix is
undecidable.

3.1 ProofIdea

We do a reduction from the halting problem for two-counter machines, which is known to be undecid-
able [10], to the problem in question. To do so, we encode computation histories as strings. The choice of
two-counter machine makes this proof cleaner than other undecidability proofs for this set of formulas (see
Section 6 for a comparison with earlier work). The basic proof strategy is as follows: given a two-counter
machine M and a finite string w, we construct an Li sentence YS3AS(,...,540(5,51,...,54) such that M
does not halt on w iff this £} sentence is valid. By the construction of ¢, this will happen exactly when all
assignments to the string variable S are not codes for halting computation histories of M over w. The vari-
ables Sy, ..., 84 are used to refer to substrings of § and the quantifier-free formula 6 expresses the property
of § not coding a halting computation history.

3.2 Recalling Two-counter Machines

A two-counter machine is a deterministic machine which has a finite-state control, two semi-infinite storage
tapes, and a separate read-only semi-infinite input tape. All tapes have a left endpoint and no right endpoint.
All tapes are composed of cells, each of which may store a symbol from the appropriate alphabet (the
alphabet of the storage tapes is {Z, blank}; the alphabet of the input alphabet is some fixed finite set). The
input to the machine is a finite string written on the input tape, starting at the leftmost cell. A special
character follows the input string on the tape to mark the end of the input. Each tape has a corresponding
tape-head that may move left, move right, or stay put. The input tape-head cannot move past the right end
of the input string. The initial position of all the tape-heads is the leftmost cell of their respective tapes. At
each point in the computation, the cell being scanned by each tape-head is called that tape’s current cell.

The symbol Z serves as a bottom of stack marker on the storage tapes. Hence, it appears initially on
the cell scanned by the tape head and may never appear on any other cells. A non-negative integer i can be
represented on the storage tape by moving the tape head i cells to the right of Z. A number stored on the
storage tape can be incremented or decremented by moving the tape-head to the right or to the left. We can
test whether the number stored in one of the storage tapes is zero by checking if the contents of the current
cell of that tape is Z. But, the equality of two numbers stored on the storage tapes cannot be directly tested.
It is well known that the two-counter machine can simulate an arbitrary Turing machine. Consequently, the
halting problem for two-counter machines is undecidable [10].

More formally, a two-counter machine M is a tuple (Q, 4, {Z, b, c}, 6, gy, F) where,

— Qs the finite set of control states of M, gp € @ is the initial control state, and F' € Q is the set of final
control states.

— A is the finite alphabet of the input tape, {Z, b} and {Z, c} are the storage tape alphabets for the first and
second tapes, respectively. (The distinct blank symbols for the two tapes are a notational convenience.)

— 0 is the transition function for the control of M. This function maps the domain, Q X 4 X {Z,b} X {Z, ¢}
into Q x {in, storl, stor2} x {L, R}. In words, given a control state and the contents of the current cell
of each tape, the transition function specifies the next state of the machine, a tape-head (input or one of
the storage tapes) to move, and whether this tape-head moves left (L) or right (R).

3.3 Instantaneous Description of Two-counter Machines as Strings

We define instantaneous descriptions (ID) of two-counter machines in terms of strings. Informally, the ID
of a machine represents its entire configuration at any instant in terms of machine parameters such as the
current control state, current input-tape letter being read by the machine, and current storage-tape contents.
The set of IDs will be determined both by the machine and the given input to the machine.

Definition of ID: An instantaneous description (ID) of a computation step of a two-counter machine M
running on input w is the concatenation of the following components.

— Current control state of M: represented by a character over the finite alphabet Q.

— The input w and an encoding of the current input tape cell. The encoding uses string constants to
represent the integers between 0 and |[w| — 1; let N; denote the string constant encoding the number .

— The finite distances of the two storage heads from the symbol Z, represented as a string of blanks (i.e.,
in unary representation). For convenience, we will use the symbol b to denote the blanks on storage
tape 1, and ¢ on storage tape 2.

Each component of an ID is separated from the others by an appropriate special character. In what
follows, we will suppress discussion of this separator and we will assume that it is appropriately located
inside each ID. A lengthy but technically trivial modification of our reduction formula could be used to
allow for the case where this separator is missing.

Definition of Initial ID: For any two-counter machine M and each input w, there is exactly one initial
ID, denoted Inity;,,. This ID is the result of concatenating the string representations of the following data:

Initial state go of M, w, 0, €, €. The “0” says that the current cell of the input tape contains the Oth letter of
w. The two “€”’s represent the contents of the two storage tape: both are empty at this point.

Definition of Final ID: We use the standard convention that a two-counter machine halts only after the
storage tapes contain the unary representation of the number 0 and the input tape-head has moved to the
leftmost position of its tape. The ID of the machine at the end of a computation is therefore the concatenation
of representations of g, w,0, €, €, where g, is one of the finitely many final control states g, € F of M.
Observe that there are only finitely many Final IDs.

3.4 Computation History of a Two-counter Machine as a String

A well-formed computation history of a two-counter machine M as it processes a given input w is the
concatenation of a sequence of IDs separated by the special symbol #. The first ID in the sequence is the
initial ID of M on w, and for each i, ID;.; is the result of transforming ID; according to the transition
function of M. A well-formed computation history of the machine M on the string w is called accepting
if it is a finite string whose last ID is a Final ID of M on w. The last ID of a string is defined to be the
rightmost substring following a separator #. If a finite computation history is not accepting, it is either not
well-formed or rejecting.

3.5 Alphabet for String Formulas and The Universe of Strings

Given a two-counter machine M and an input string w, we define the associated finite alphabet
2o ={#gNjw:qi € Q,0 < j<|wl}.

This alphabet includes all possible initial segments of IDs, not including the data about the contents of the
storage tapes. We also define 2} = b and 2> = ¢. We define the alphabet of strings as 2 = {2 UZX| U 23},
and the universe of strings as 2. Thus, each valid ID will be in the regular set 2p2727.

3.6 The Undecidability Theorem

Theorem 4 The validity problem for the set of .[_i sentences over positive word equations with ¥ quantifier
alternation is undecidable.

Proof. By Reduction: We reduce the halting problem for two-counter machines to the decision problem
in question. Given a pair (M, w) of a two-counter machine M and an arbitrary input w to M, we construct
an Li—formula Oripe(S. S 1,-- -, S 4, U, V) which describes the conditions for §,..., S 4 to be substrings of §
and S to fail to code an accepting computation history of M over w. Thus,

¥SAS1,852,83,845, U,V (O4,,(S, 81, ,84, U, V)

is valid if and only if it is not the case that M halts and accepts on w. For brevity, we write # for 6y,,.

Structure of 8: We will define 6 as the disjunction of ways in which § could fail to encode an accepting
computation history: either S does not start with the Initial ID, or § does not end with any of the Final IDs,
or § is not a well-formed sequence of IDs, or it does not follow the transition function of M over w.

8 =(\/ S=E-S)V(\/ S=8,-E)V

EeNotlnit EeNotFinal
NotWellFormedSequence(S, S, -+, S4)V
(§=851-82-8:-S)ANUb=bU)AN(Vec=cV)A-Next(5,51,52,53,.54, U, V))

Note that the variables §; (i =1,..., 4) represent substrings of §.

— Notlnit and NotFinal: The set Notlnit is a finite set of string constants for strings with length at most
that of the Initial ID Inity,, which are notequal to Inity,,. Similarly, NotFinal is a set of string constants
for strings that that are not equal to any of the Final IDs, but have the same or smaller length.

— NotWellFormedSequence: This subformula asserts that § is not a sequence of IDs. Recall that, by
definition, the set of well-formed IDs is described by the regular expression 22727 = Xpb*c*, where
strings in Xy (as defined above) include the ID separator # as well as codes for the control state, w,
and letter of w being scanned. A well-formed sequence of IDs is a string of the form (XZpb*c*)* —
€. Thus, the set described by NotWellFormedSequence should be 2" — (2b*c*)*. In fact, we can
characterize this regular set entirely in terms of word equations: a string over X' = Xy U {b, ¢} is not
a well-formed sequence of IDs if and only if it starts with b or ¢, or contains cb. The fact that a non
well-formed sequence may start with b or ¢ is already captured by the Notlnit formula above. The
fact that a non well-formed sequence contains cb or is an € is guaranteed by the following formula
NotWellFormedSequence():

S=e)v(S§ =81:¢c-b-84).

— Next:
Next() asserts that the pair of variables §;, §3 form a legal transition. It is a disjunction over all (finitely
many) possible pairs of IDs defined by the transition function:

S, = #g,N,,wUV A S5 = #gsN,,wf(U)g(V)

nia

(g2.d.g1.82.q3 £ m)ES: 00y 13 <|w]

where d = w(ny); gy = Zif U = eand g, = b otherwise; g, = Zif V = € and g, = ¢ otherwise; and
f(U), g(V),N,, are the results of modifying the stack contents represented by U, V and input tape-head
position according to whether the value of ¢ is in, storl, or stor2 and whether m is L or R. Note that the
disjunction is finite and is determined by the transition function and w. Also note that each of #g,N,,,w
and #¢3N,,,w is a single letter in 2j.

Simplifying the formula: The formula # contains negated equalities in the subformula —Next. However,
each of these may be replaced by a disjunction of equalities because Q, |w|, ¢ are each finite. Hence, we can
translate € to a formula containing only conjunctions and disjunctions of positive word equations. We also
observe that the formula we constructed in the proof can be easily converted to a formula which has at most
two occurrences of any variable '. Thus, we get the final theorem.

Theorem 5 The validity problem for the set of L i sentences with ¥ quantifier alternation over positive
word equations, and with at most two occurrences of any variable, is undecidable.

Bounding the Inner Existential Quantifiers: Observe that in 6 all the inner quantifiers S, , 84, U, V
are bounded since they are substrings of §. The length function, len(S;) < len(S), can be used to bound
these quantifiers.

Corollary 6 The set of .{_i ; Sentences with a single universal quantifier followed by a block of inner
bounded existential quantifiers is undecidable.

4 Decidability Theorem

In this section we demonstrate the existence of an algorithm deciding whether any LB; formula has a
satisfying assignment, under a minimal and practical condition.

! We thank Professor Rupak Majumdar for observing this and other improvements.

4.1 Word Equations and Length Constraints

Word equations by themselves are decidable [21]. Also, systems of inequalities over integer variables are
decidable because these are expressible as quantifier-free formulas in the language of Presburger arithmetic
and Presburger arithmetic is known to be decidable [22]. In this section, we show that if word equations can
be converted into solved form, the satisfiability problem for quantifier-free formulas over word equations
and length constraints (i.e., LB; formulas) is decidable. Furthermore, we describe our observations of word
equations in formulas generated by the Kudzu JavaScript bugfinding tool [25]. In particular, we saw that
these equations either already appeared in solved form or could be algorithmically converted into one.

4.2 What is Hard about Deciding Word Equations and Length Constraints?

The crux of the difficulty in establishing an unconditional decidability result is that it is not known whether
the length constraints implied by a set of word equations have a finite representation [21]. In the case when
the implied constraints do have a finite representation, we look for a satisfying assignment to both the
implied and explicit constraints. Such a solution can be translated into a satisfying assignment of the word
equations when the implied constraints of the system of equations is equisatisfiable with the system itself.

4.3 Definition of Solved Form

A word equation w has a solved form if there is a finite set S of formulas (possibly with integer parameters)
that is logically equivalent to w and satisfies the following conditions.”

- Every formula in S1is of the form X = ¢, where X is a variable occurring in w and ¢ is the result of finitely
many concatenations of constants in w (with possible integer parameters) and possible unfixed parts.
(Recall the definitions for integer parameters and unfixed parts from Section 2.) All integer parameters
i in § are linear, of the form ¢i where ¢ is an integer constant.

— Every variable in w occurs exactly once on the LHS of an equation in S and never on the RHS of an
equation in S.

The solved form corresponding to w is the conjunction of all the formulas in S, denoted AS. If there is
an algorithm which converts any given word equation to solved form (if one exists, and halts in finite time
otherwise), and if AS is the output of this algorithm when given w, we say that the effective solved form
of wis AS. Solved form equations can have integer parameters, whereas LE’ ; formulas cannot. The solved
form is used to extract all necessary and sufficient length information implied by w.

Example 7 Satisfiable Solved Form Example: Consider the system of word equations
Xa=a¥ nYa=Xa.
This formula can be converted into solved form as follows:

X=d AY=d (i = 0).

Example 8 Unsatisfiable Solved Form Example: Consider the formula

abX = Xba N X = abY Nlen(X) <2

% The idea of solved form is well known in equational reasoning, theorem proving, and satisfiability procedures for
rich logics (aka SMT solvers).

with variables X, Y. The set of solutions to the equation abX = Xba is described by the map X — (ab)'a
with i = 0 (recall Example 2). Hence the solved form for the system of two equations is:

X =(abYaAY =(ab)'a (i>0)
The length constraints implied by this system are
len(X)=2c+1ANlen(Y)=2c—-1Alen(X) <2 (c>0).
This is unsatisfiable. Hence, the original formula is also unsatisfiable.

Example 9 Word Equations Without a Solved Form: Not all word equations can be written in solved
form. Consider the equation
XabY = YbaX.

The map X — a,Y — aais a solution, as is X — bb,Y — b. However, it is known that the solutions to
this equation cannot be expressed using linear integer parameters [21]. Thus, not all satisfiable systems of
equations can be expressed in solved form.

4.4 Why Solved Form?

For word equations with an equivalent solved form, all length information implied by the word equations
can be represented in a finite and complete (defined below) manner. The completeness property enables
a satisfiability procedure to decouple the word equations from the (implied and given) length constraints,
because it guarantees that the word equation is equisatisfiable with the implied length constraints. Further-
more, solved form guarantees that the implied length constraints are linear inequalities, and hence their
satisfiability problem is decidable [22]. This insight forms the basis of our decidability results. It is note-
worthy that most word equations that we have encountered in practice [25] are either in solved form or can
be automatically converted into one.

4.5 Proof Idea for Decidability

Without loss of generality, we consider formulas that are the conjunction of word equations and length
constraints. (The result can be easily extended to arbitrary Boolean combination of such formulas.) Let
¢ A 6 be an LEJ—formula, where ¢ is a conjunction of word equations and € is a conjunction of length
constraints. Observe that ¢ implies a certain set of length constraints.

Example 10 Consider the equation X = abY. We have the following set R of implied length constraints:
{len(X) =2 + len(Y), len(Y) = 0}.

The set R is finite but exhaustive. That is, any other length constraint implied by the equation X = ab¥ is
either in R or is implied by R . Consider the .[2 formula

X = ab¥ Alen(Y) > 1,

Note that X = abY is satisfiable, say by the assignment with unfixed parts X — aby,Y — y. It remains
to check whether there is a solution (represented by some choice of the unfixed part) which satisfies the
length constraints R U {len(Y) > 1}. A solution to the set of integer inequalities is len(X) = 4, len(Y) = 2.
Translating this to a solution of the original formulas amount to “back-solving” for the exponent of unfixed
parts in the solution to the word equation. That is, since X w— aby,Y w— vy is a satisfying assignment, we
can pick any string of length 2 for y: say, X — abab, Y — ab.

Taking this example further, consider the .{_E formula
X =abY Alen(Y)> 1A len(X) < 2.

The set of length constraints is now: {len(X) = 2 + len(Y), len(Y) = 0,len(Y) > 1,len(X) < 2}. This is not
satisfiable, so neither is the original formula.

The set of implied length constraints for word equations that have a solved form is also finite and

exhaustive. We prove this fact below, and use it to prove that a sound, complete and terminating satisfiability
procedure exists for LSJ formulas with word equations in solved form.
Definitions: We say that a set R of length constraints is implied by a word equation ¢ if the lengths of the
strings in any solution of ¢ satisfy all constraints in R. And, R is complete for ¢ if any length constraint
implied by ¢ is either in R or is implied by a subset of R. These definitions can be suitably extended to a
Boolean combination of word equations.

4.6 Decidability Theorem
We prove a set of lemmas culminating in the decidability theorem.

Lemma 1. If a word equation w has a solved form S, then there exists a set R of linear length constraints
implied by w that is finite and complete. Moreover, there is an algorithm which, given w, computes this set
R of constraints.

Proof. Since a word equation w is logically equivalent to its solved form S, every solution to w is a solution
to 8§ and vice-versa. Hence, the set of length constraints implied by w is equivalent to the set of length
constraints implied by 8. In R, we will have integer variables associated with each string variable in w,
integer variables associated with each unfixed part appearing in the RHS of an equation in 8, and integer
variables associated with each integer parameter appearing in the RHS of an equation in 8. For each X
appearing in w, consider the equation in & whose LHS is X: X = ¢, ---1,, where each #; is either (1) a
constant from w, (2) a constant from w raised to some integer parameter, or (3) an unfixed part. This equation
implies a length equation of the form: len(X) = C + ijcy + - - + igcy + len(y,) + -- - len(y;), where C is the
sum of the lengths of constants in w that appear on the RHS without an integer parameter; the ¢; terms are
the lengths of constants with integer parameters; and there are terms for each unfixed part appearing in the
equation. The only other length constraints associated with this equation say that the unfixed parts and the
integer parameters may be arbitrarily chosen: i, > 0, len(y;) > O foreach] < r <kand1 <1 < 5 < j. Note
that the minimum length of X is the expression above where we choose each i, = 0 and each len(y,) = 0.
Let R be the union over X in w of the (finitely many) length constraints associated with X discussed above.
Since S is finite, so is R.

It remains to prove that R is complete. By definition of solved form, all length constraints implied by 8
are of the form included in R. Thus, R is complete for S. Since S is logically equivalent with w, they imply
the same length constraints. Hence, R is complete for w as well.

Lemma 2. If a word equation w has a solved form S, then w is equi-satisfiable with the length constraints
R derived from S.

Proof. Since R s finite, the conjunction of all its elements is a formula of LE;

(=) If w is satisfiable, then so is R: Suppose w is satisfiable and consider some satisfying assignment
w. Then since R is implied by w, the lengths of the strings in this assignment satisfy all the constraints in
R. Thus, this set of lengths witnesses the satisfiability of R.

(<) If R is satisfiable, then so is w: Suppose R is satisfiable. Any solution of R gives a collection of
lengths for the variables in w. An assignment that satisfies w is given by choosing arbitrary strings of the
prescribed length for the unfixed parts and choosing values of the integer parameters prescribed by the
solution of R.

10

Theorem 11 The satisifiability problem for L£° el formulas is decidable, provided that there is an algorithm
to obtain the solved forms of word equations fm‘ which they exist.

Proof. We assume without loss of generality that the given L“ formula is the conjunction of a single word

equation with some number of length constraints. (Generalmng to arbitrary .£ formulas is straightfor-
ward.) Let the input to the algorithm be a formula ¢ A 8, where ¢ is the word equauon and 6 is a conjunction
of length constraints. The output of the algorithm is satisfiable (SAT) or unsatisfiable (UNSAT).

Plandowski’s algorithm [21] decides satisfiability of word equations; known algorithms for formulas of
Presburger arithmetic can decide the satisfiability of systems of linear length constraints. Thus, begin by
running these algorithms (in parallel) to decide if (separately) ¢ and € are satisfiable. If either of these return
UNSAT, we return UNSAT.

Using the assumption that the word equation ¢ has an effective solved form, compute this form § and
the associated (complete and finite) implied set R of linear length constraints (as in Lemma 1). By Lemma
2, it is now sufficient to check the satisfiability of (AR) A 6. This can be done by a second application of an
algorithm for formulas in Presburger arithmetic, because the length constraints implied by ¢ are all linear.
If this system of linear inequalities is satisfiable, return SAT, otherwise, we return UNSAT.

This procedure is a sound, complete and terminating procedure for ng—l"ormulas whose word equations
have effective solved forms.

4.7 Practical Value of Solved Form and the Decidability Result

JavaScript programs often process strings. These strings are entered into input forms on web-pages or are
substrings used by JavaScript programs to dynamically generate web-pages or SQL queries. During the
processing of these strings, JavaScript programs often concatenate these strings to form larger strings, use
strings in assignments, compare string lengths, construct equalities between strings as part of if-conditionals
or use regular expressions as basic “sanity-checks” of the strings being processed. Hence, any program
analysis of such JavaScript programs results in formulas that contain string constants and variables, the
concatenation operation, regular expressions, word equations, and uses of the length function.

In their paper on an automatic JavaScript testing program (Kudzu) and a practical satisfiability proce-
dure for strings [25], Saxena et al. mention generating more than 50,000 LO formulas where the length
of the string variables is bounded (i.e., the string variables range over a ﬁmle universe of strings). Kudzu
takes as input a JavaScript program and (implicit) specification, and does some automatic analysis (a form
of concrete and symbolic execution [2,9]) on the input program. The result of the analysis is a string for-
mula that captures the behavior of the program-under-test in terms of the symbolic input to this program. A
solution of such a formula is a test input to the program-under-test. Kudzu uses the Kaluza string solver to
solve these formulas and generate program inputs for program testing.

We obtained more than 50,000 string constraints (word equations + length constraints) from the Kaluza
team (http://webblaze.cs.berkeley.edu/2010/kaluza/). Kaluza is a solver for string constraints, where these
constraints are obtained from bug-finding and string analysis of web applications. The constraints are di-
vided into satisfiable and unsatisfiable constraints. We wrote a simple Perl script to count the number of
equations per file and the number of equations already in solved form (identifier = expression). We then
computed the ratio to see how many examples from this actual data set are already in solved form.

Experimental Results The results are divided into groups based on whether the constraints were satis-
fiable or not. For satisfiable small equations (approximately 30-50 constraints per file), about 80% were
already in solved form. For satisfiable large equations (around 200 constraints per file), this number rose to
approximately 87%. Among the unsatisfiable and small equations (less than 20 constraints per file), again
about 80% were already in solved form. Large (greater than 4000 constraints) unsatisfiable equations were
in solved form a slightly smaller percentage of the time: 75%.

11

5 Word Equations, Length, and Regular Expressions

We now consider whether the previous result can be extended to show that the satisfiability problem for
‘EEJ,r formulas is decidable, provided that there is an algorithm to obtain the solved forms of given word
equations. A generalization of the proof strategy from above looks promising. That is, given a membership
test in a regular set X € RE, we can extract from the structure of the regular expression a constraint on
the length of X that is expressible as a linear inequality. Thus, it may seem that the same machinery as in
the LE,; theorem may be applied to the broader context of LS’U_. However, there remain some subtleties to
resolve.

Example 12 Consider the .[_2 . Jormula
abX = Xba N X € (ab)y'b A len(X) < 3.

A naive translation of each component into length constraints gives us the following:

len(X)=2i+1,i =20 implied by the word equation and regular expression
len(X) < 3.

This system of length constraints is easily seen to be simultaneously satisfiable: let i = 0 or 1 and hence
len(X) = 1 or 3. However, the formula is not satisfiable since solutions of the word equation are X € (ab)'a
and the regular expression requires any solution to end in a b.

Thus, in order to address .£“ formulas, we must take into account more information than is encapsu-
lated by the length constraints 1mp0sed by regular expressions. In particular, if we impose the additional
restriction that the word equations must have solved form (without unfixed parts) that are also regular ex-
pressions, then we can get a decidability result for 13?,;,,- formulas.

Lemma 3. If a word equation has a solved form without unfixed parts that is also a regular expression,
then there is a finite set of linear length constraints that can be effectively computed from this solved form
and which are equisatisfiable with the equation.

Proof. 1t is sufficient to recall the fact, from [1], that given a regular set R, the set of lengths of strings in
R is a finite union of arithmetic progressions. Moreover, there is an algorithm to extract the parameters of
these arithmetic progressions from the regular expression defining R.

Using the above Lemma, the set of length constraints implied by an arbitrary regular expression can be
expressed as a finite system of linear inequalities.

Theorem 13 The satisifiability problem for .{_0 ,Jormulas is decidable, provided that there is an algorithm
to obtain the solved forms of the given word equarmm and the solved form equations do not contain unfixed
parts and are regular expressions.

The proof is a straightforward extension of the conditional decidability proof given in Section 4.

6 Related Work

In his original 1946 paper, Quine [23] showed that the first-order theory of string equations (i.e., quantified
sentences over Boolean combination of word equations) is undecidable. Due to the expressibility of many
key reliability and verification questions within this theory, this work has been extended in many ways.
One line of research studies fragments and modifications of this base theory which are decidable. No-
tably, in 1977, Makanin proved that the satisfiability problem for the quantifier-free theory of word equa-
tions is decidable [15]. In a sequence of papers, Plandowski and co-authors showed that the complexity of

12

this problem is in PSPACE [21]. Stronger results have been found where equations are restricted to those
where each variable occurs at most twice [24] or in which there are at most two variables [3,4,11]. In the
first case, satisfiability is shown to be NP-hard; in the second, polynomial (which was improved further in
the case of single variable word equations).

Concurrently, many researchers have looked for the exact boundary between decidability and unde-
cidability. Durnev [5] and Marchenkov [16] both showed that the Y3 sentences over word equations is
undecidable. Note that Durnev’s result is closest to our undecidability result. The main difference is that
our proof is considerably simpler because of the use of two-counter machines, as opposed to certain non-
standard machines used by Durnev. We also note corollaries regarding number of occurences of a variable,
and Li; sentences with a single universal followed by bounded existentials. On the other hand, Durnev uses
only 4’slring variables to prove his result, while we use 7. We believe that we can reduce the number of
variables, at the expense of a more complicated proof.

Word equations augmented with additional predicates yield richer structures which are relevant to many
applications. In the 1970s, Matiyasevich formulated a connection between string equations augmented with
integer coeflicients whose integers are taken from the Fibonacci sequence and Diophantine equations [17].
In particular, he showed that proving undecidability for the satisfiability problem of this theory would suffice
to solve Hilbert’s 10th Problem in a novel way. Schulz [26] extended Makanin’s satisfiability algorithm to
the class of formulas where each variable in the equations is specified to lie in a given regular set. This is
a strict generalization of the solution sets of word equations. [12] shows that the class of sets expressible
through word equations is incomparable to that of regular sets.

Moller [19] studies word equations and related theories as motivated by questions from hardware ver-
ification. More specifically, Méller proves the undecidability of the existential fragment of a theory of
fixed-length bit-vectors, with a special finite but possibly arbitrary concatenation operation, the extraction
of substrings and the equality predicate. Although this theory is related to the word equations that we study,
it is more powerful because of the finite but possibly arbitrary concatenation.

References

1. Achim Blumensath. Automatic structures. Diploma thesis, RWTH-Aachen, 1999.
. C. Cadar, V. Ganesh, PM. Pawlowski, D.L. Dill, and D.R. Engler. EXE: automatically generating inputs of death.
In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM Conference on Computer
and Communications Security, pages 322-335. ACM, 2006.
3. W. Charatonik and L. Pacholski. Word equations with two variables. In H. Abdulrab and J.-P. Pécuchet, editors,
IWWERT, volume 677 of Lecture Notes in Computer Science, pages 43-56. Springer, 1991.
4. R. Dabrowski and W. Plandowski. On word equations in one variable. Algorithmica, 60(4):819-828, 2011.
5. V. Durnev. Undecidability of the positive ¥ -theory of a free semigroup. Siberian Mathematical Journal,
36(5):1067-1080, 1995.
6. H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Undergraduate Texts in Mathematics. Springer-
Verlag, 1994.
7. M. Emmi, R. Majumdar, and K. Sen. Dynamic test input generation for database applications. In D.S. Rosenblum
and §.G. Elbaum, editors, ISSTA, pages 151-162. ACM, 2007.
8. V. Ganesh, A. Kiezun, S. Artzi, P.J. Guo, P. Hooimeijer, and M.D. Ernst. HAMPI: A string solver for testing,
analysis and vulnerability detection. In G. Gopalakrishnan and S. Qadeer, editors, CAV, volume 6806 of Lecture
Notes in Computer Science, pages 1-19. Springer, 2011.
9. P. Godefroid, N. Klarlund, and K. Sen. DART?: directed automated random testing. In V. Sarkar and M.W. Hall,
editors, PLDI, pages 213-223. ACM, 2005.
10. J.E. Hoperoft, R. Motwani, and 1.D. Ullman. Introduction to automata theory, languages, and computation. Pear-
son/Addison Wesley, 2007.

11. Lucian [lie and Wojciech Plandowski. Two-variable word equations. [TA, 34(6):467-501, 2000.

12. J. Karhumiki, F. Mignosi, and W. Plandowski. The expressibility of languages and relations by word equations. J.
ACM, 47(3):483-505, 2000.

(S~

13

20.

21.

22.

23.

24.

25.

26.

27.

. A. Kiezun, V. Ganesh, PJ. Guo, P. Hooimeijer, and M.D. Emst. HAMPL: a solver for string constraints. In

G. Rothermel and L.K. Dillon, editors, ISSTA, pages 105-116. ACM, 2009.

Rupak Majumdar. Private correspondence. SWS, MPI, Kaiserslautern, Germany, 2010.

G.S. Makanin. The problem of solvability of equations in a free semigroup. Math. Shornik, 103:147-236, 1977.
English transl. in Math USSR Sbornik 32 (1977).

S. S. Marchenkov. Unsolvability of positive ¥3-theory of free semi-group. Sibirsky mathmatichesky jurnal,
23(1):196-198, 1982.

. Yu. Matiyasevich. Word equations, Fibonacci numbers, and Hilbert's tenth problem. Unpublished. Available at

http:/flogic.pdmi.ras.ru/?yumat/Journal/jcontord.htm, 2006.

. Yu. Matiyasevich. Computation paradigms in light of Hilbert's Tenth Problem. In S.B. Cooper, B. Lowe, and

A. Sorbi, editors, New Computational Paradigms, pages 59-85. Springer New York, 2008.

Oliver Moller. 3BV, solvability. Unpublished Manuscript. SRI International, Menlo Park, CA, USA, October
1996.

W. Plandowski. Satisfiability of word equations with constants is in PSPACE. In FOCS, pages 495-500. IEEE
Computer Society, 1999.

W. Plandowski. An efficient algorithm for solving word equations. In I.M. Kleinberg, editor, STOC, pages 467—
476. ACM, 2006.

M. Presburger. Uber de vollstindigkeit eines gewissen systems der arithmetik ganzer zahlen, in welchen, die
addition als einzige operation hervortritt. In Comptes Rendus du Premier Congrés des Mathématicienes des Pays
Slaves, pages 92-101, 395, Warsaw, 1927.

W. V. Quine. Concatenation as a basis for arithmetic. The Journal of Symbolic Logic, 11(4):105-114, 1946.

J.M. Robson and V. Diekert. On quadratic word equations. In C. Meinel and S. Tison, editors, STACS, volume
1563 of Lecture Notes in Computer Science, pages 217-226. Springer, 1999.

P. Saxena, D. Akhawe, S. Hanna, F. Mao, §. McCamant, and D. Song. A symbolic execution framework for
JavaScript. In JEEE Symposium on Security and Privacy, pages 513-528. I[EEE Computer Society, 2010.

K. Schulz. Makanin’s algorithm for word equations-two improvements and a generalization. In K. Schulz, editor,
Word Equations and Related Topics, volume 572 of Lecture Notes in Computer Science, pages 85-150. Springer
Berlin / Heidelberg, 1992.

G. Wassermann and Z. Su. Sound and precise analysis of web applications for injection vulnerabilities. In J. Fer-
rante and K.S. McKinley, editors, PLDI, pages 32—41. ACM, 2007.

14

Congruence closure with ACI function symbols

Tanji Hu and Robert Givan

Purdue University ECE
{hut, givan}@purdue.edu

Abstract. Congruence closure is the following well known reasoning
problem: given a premise set of equations between ground terms over
uninterpreted function symbols, does a given query equation follow us-
ing the axioms of equality? Several methods have been provided for
polynomial-time answers to this question. Here we consider this same
setting, but where some of the function symbols are known to be asso-
ciative, commutative, and idempotent (ACI). Given these additional ax-
ioms, does the query equation follow from the premise equations? We pro-
vide a sound and complete cubic-time procedure correctly answering such
questions. The problem requires exponential space when adding only AC
function symbols [18], but requiring idempotence restores tractability .
Our procedure is defined by providing a sound and complete “local” rule
set for the problem [11]. A “local formula” is a formula mentioning only
terms appearing in the premises or query. A local rule set is one for which
any derivable local formula has a derivation using only local intermediate
formulas. Closures under local rule sets can immediately be constructed
in polynomial time by refusing to infer non-local formulas. Finally, we
present results on the integration of ACI function symbols and equality
inference rules into more general local rule sets.

1 Introduction

Congruence closure is a well studied algorithmic problem: given a set of ground
equations over a first-order term language of uninterpreted function symbols,
which other ground equations between terms are entailed? Previous study has
provided a small variety of approaches to efficiently solving this problem [23, 21,
16] as well as a great deal of work on related algorithms (2,4, 3, 15]. The impor-
tance of this problem is apparent in the foundational nature of equality in almost
every deductive setting, in systems representing expressive knowledge for almost
any purpose. Keynote examples have been deductive support for advanced com-
pilers and other program analysis tools (e.g., [9]), and reasoning systems for
representing mathematics (e.g., [8, 19, 5]).

A range of prior work has been conducted on congruence closure in the
presence of additional axioms about some or all of the function symbols that
are present, resulting in the “uniform word problem” in a variety of algebraic
structures [22, 13, 6, 7]. Much of this work does not allow arbitrary uninterpreted
function symbols in addition to those affected by the axioms considered (typi-
cally commutativity and/or associativity). Notable among the prior related work

15

is [18] showing that the uniform word problem for commutative semigroups
requires exponential space. This result implies that other methods discussing
associative-commutative congruence closure that can solve this word problem,
e.g. [2], will require at least exponential time to terminate in the worst case.

Our work here studies a case that we believe has been missed in the above
panoply of results, but has a distinguished tradeoff between the desired expres-
siveness and the desired tractability. Here, we allow arbitrary uninterpreted func-
tion symbols, some subset of which is labeled as associative, commutative, and
idempotent (ACI). ACI functions that arise naturally most obviously include
intersection/union, and/or, and integer maximization/minimization. Program
analysis frequently involves integer maximization or Boolean abstractions.

Here, we provide a cubic-time complete inference algorithm for congruence
closure in this setting. Qur procedure is defined using the technology of loca
rule sets [11,20]; local rule sets are those for which the computed inference
relation is unchanged by restricting inference to the terms mentioned in the
premises and query. Any local rule set describes a polynomial-time decidable
inference relation. In addition to providing a complete inference relation for the
ACT congruence closure problem using a local rule set, we consider the problem
of adding the ACI designation to function symbols in an arbitrary rule set.
With no restrictions on the rule set, adding this designation may be expensive;
however, we present a natural restriction on inference rules for which any local
rule set can be augmented by ACI designations while retaining locality and
thus polynomial-time decidability. Under this restriction, ACI function-symbol
arguments can only be accessed by the inference rules in manners independent
of the order or multiplicity of their presentation.

We proceed as follows: first, we present brief technical background on local-
ity and on congruence closure, including a local rule set for congruence closure.
Second, we present a simple rule set for reasoning about the ACI properties
of terms resulting from ACI function symbols. Third, we prove this rule set
together with the congruence closure rule set provides semantically sound and
complete inference for the congruence closure problem with multiple ACI func-
tion symbols. Fourth, we prove that the resulting rule set is local, immediately
providing a cubic-time procedure for the inference relation. Finally, we discuss
integration with arbitrary rule sets restricted to access ACI terms via tuples of
their arguments.

2 Technical Background
2.1 Locally Restricted Inference

We adopt the following definitions for reference almost directly from [11]. In the
these definitions, X is any set of ground atomic formulas in first-order logic, and
 any single ground atomic formula.

Definition 1. A Horn clause is a first order formula of the form (11 A ... A
¥n) — 1 where ¥ and the ¢; are atomic formulas. For any rule set of Horn
clauses R, we write X' b, ¢ whenever X UU(R) & ¢ in first-order logic, where
U(R) is the set of universal closures of Horn clauses in R.

16

We can characterize F syntactically by defining derivations under the rules R.

Definition 2. A derivation from X using rule set R is a sequence of ground
atomic formulas vy, ..., such that v, is ¢ and for each v; there exists a
Horn clause 81 N ... A 0 — 0 in R and a ground substitution o such that
olf] is ¥; and each formula of the form o(0;] is either a member of £ a formula
iy for j < i. The length of the derivation is the number n of ground formulas

in the sequence.

We then have X' |, ¢ if and only if there is a derivation of ¢ from X using R. Next,
by restricting inference to terms mentioned in X or ¢, we get a polynomial-time
decidable inference relation that may or may not the same as k.

Definition 3. Let T be a set of terms that is closed under the subterm relation.
We say that a ground atomic formula v is local to T if every term appearing in
YisinY. For I' a set of ground atomic formulas, let Y (I") be the subterm-closed
set of terms appearing in I'. We write X' |, o @ if there exists a local derivation
of ¢ from X, i.e. one such that every atomic formula in the derivation is local
toT. We omit T to get X Ik, o when T is V(X U{p}).

MeAllester [20] provides a simple proof that the inference relation I-, is polynomial-
time decidable for any finite R; a straight-forward inference procedure can grow

a set of derivable ground atoms from X by repeatedly considering each infer-
ence rule at polynomial time cost, staying always within the polynomially many
ground atoms local to 7(X U {}).

Definition 4 (McAllester, 1993). The rule set R is local if the restricted
inference relation |-y is the same as the unrestricted inference relation b.

Every inference relation that can be defined by a local rule set is then polynomial-
time decidable. It has also been shown [11] that every polynomial-time predicate
can be defined by a local rule set.

2.2 Congruence Closure

The following inference rules E define a complete, local inference relation for
1
ground atomic equational premises and ground equational queries.

(eq-refl) — @ = (eqrsymm) T =1y — y=2=o
(eq-trans) = =1y Ny =2z — & =z (eqreongrl) = =1y — [lx) = [(y)
(eqrcongr2) T1 =11 A w2 =y2 — glx1,72) = gy, y2)

For notational simplicity, we assume wlog that all function symbols have arity
at most 2. We note that the eg-congr rules are actually abbreviations for finitely
many rules, one for each function symbol of the given arity. When the equality
rules are included with other rule sets, we will also assume eg-congr rules for
each predicate symbol of the larger rule set, representing the same principle of
substitution of equals: e.g., z =y A P(x) — P(y).

The rule set E has been proven complete even when locally restricted (IFz
is complete), proving E is local and providing a polynomial-time decision pro-
cedure for this problem, called congruence closure [21]. We refer to any rule set
containing the rules of E, among others, as an equational rule set.

17

3 A Congruence/ACI Rule Set

Here, we provide a set ACI of inference rules for binary function symbols known
to be ACI (associative, commutative, and idempotent (f(z,z) = x)). We assume
now that some subset of the function symbols have been designated as ACI. For
each such function symbol f, we introduce a new binary predicate =, and the
rules in ACI are schemas providing one rule for each such function symbol. The
rules can be best understood by thinking of the new atoms x =; y as standing
for “there exists w such that f(z,w) =y."

(ACI-trans) ==,y A y=;z — r=;z (ACIL-refl) — ==,
(ACI-sup) =,z N y=;z — [lx,y)=;z (ACL-subl) — ==/ f(x,y)
(ACI-antisym) = =,y A y=;1r — T =1y (ACI-sub2) — y=; f(x.,y)

Here, the new predicates <, implement inference from the ACI axioms, but
these predicates are not intended to be part of premise sets or query formulas.
We designate the new predicates as hidden, prohibiting them in premise sets
and queries. This designation affects the claims we later make of rule-set locality
and completeness. In each case, these claims refer to inference problems without
the hidden predicates in the premises or query.

In the coming sections, we will prove this rule set, in combination with
the equality rules E, is both correct (b acr is sound and complete) and lo-
al (IFg o acr 18 the same as bz acr), thus providing a polynomial time inference
procedure for the congruence closure problem in the presence of known ACI
function symbols.

4 Correctness of the Congruence/ACI Rule Set

In this section we prove that the inference rules E U ACI are sound and com-
plete for ground inference on equations. Since our rules and our premise sets are
first-order formulas, completeness here refers to standard first-order logic inter-
pretations. Note again that the introduced predicates =, are considered hidden
and do not appear in premise sets or queries.

Definition 5. The ACI-congruence theory A is the set of first-order axioms of
equality (reflezivity, symmetry, transitivity, and substitution of equals for equals)
together with the arioms of associativity, commutativity, and idempotence for
each ACI function symbol. A ground premise set X of equations entails a ground
query equation @ in the ACI-congruence theory, written X U AF @, when every
first-order interpretation satisfying X U A also satisfies p.

Theorem 1 (Soundness and Completeness). For any ground premise set
of equations X and ground query equation p, we have XU A F p if and only if
Z '_E U ACI L!Q’

Proof. We consider each direction of the theorem separately.

(Soundness) A simple induction on derivation length shows that every ground
atom in a derivation from X using E' U ACI satisfies the following invariants:

18

=: Atoms x = y, for any terms x and y, satisfy YU AF x =y.
=, : Atoms x %, y, for any terms x and y and ACI function symbol f, satisfy

YUAF3zf(x,z) = y.

Each rule preserves these invariants. The rule ACI-antisym is the hardest to
check. We must check that AU {3zf(z,2) = y, wfly,w) = z} F z = y. In-
troducing Skolem constants we have f(x,¢1) =y and f(y,c2) = x. From these
we can show f(z, f(y, f(cl,¢2))) is equal to = and also to y using the given
premises. For instance f(x, f(y, f(cl,e2))) = f(f(f(xz,cl),y),c2) = f(f(y,y),c2)
= f(y,¢2) = . Thus the conclusion of the rule, x = y, is entailed as stated in
the invariant for =. Soundness of all derived equation atoms is then immediate.

(Completeness) We prove completeness with a standard model-construction ap-
proach. We exhibit a first-order interpretation Z that satisfies X U.A and satisfies
exactly equations ¢ that are derivable from X using rules E'U ACIL We start by
defining an equivalence relation £ on terms based on the derivable equations:
t; £ ty if and only if ¥ H | .c1 t1 = t2. The rules in E imply that £ is an
equivalence relation. We take the domain D7 of the interpretation to be the set
{[t]z | t a term} of all equivalence classes of terms under .

Next, we define the interpretation under Z[f] of each function symbol f. We
show the two argument case, which includes all ACI function symbols, but this
definition is easily generalized to function symbols of any number of arguments.
We define I(f) on domain objects [t1]z and [t2]2 to be [f(t1, t2)]z. The inference
rule (eg-congr) for the symbol f ensures that the defined output of f on two
domain elements does not depend on which terms ¢; and ¢, are selected from
the equivalence classes.

We next define the interpretation Z for the predicate symbols. Like any first-
order interpretation, Z interprets equality as the identity function. We define
Z[=, |I, for each ACI function-symbol f, to be true on domain objects [t;]. and
[to] 2 if and only if X by | acr £ %, t2. Again, the (eq-congr) rule for the predicate
=, ensures the truth value does not depend on the choice of ¢ and t,.

A straightforward induction on the compositional structure of an arbitrary
term t shows that the interpretation 7 [t] of t under 7 is [t]=. It then follows that
T satisfies an equation t; = t9 if and only if t; = t5 is derivable from X using
EUACI: i.e., we have X b | sor t1 = t2 if and only if [t1]2 = [t2]2, by definition,
if and only if Z[[t,] = Z[t.ll, by our inductive lemma, and thus if and only if
TEt; =ts, as desired. It is then immediate that 7 satisfies X' and all equations
derived from X, and no others.

It remains to argue that I F ,A. We have that 7 satisfies the first-order ax-
ioms of equality because Z[=]l is the identify function. Consider the associativ-
ity axiom for f, VaVyVzf(f(x,y), z) = f(x, f(y, z)). For any terms ¢, 12,13, the
ACT rule set justifies the following derivation: t; =<, f(ty,t2), t2 =X, f(ty,t2),
f(tit2) =; f(f(t1,t2).13), tr =y f(f(t1,t2).13), ta 2, f(f(t1,12),13),
ts =, f(f(t1,t2),t3), flta,ts) X, F(f(E1,22),t3), f(t1, f(t2,83)) R, f(f(E1,22), a),

oy f(f(61t2),t3) =y f(t1, flt2,t3)), f(f(t1,t2),ts) = f(t1, f(t2,t3)). Thus,
[f(f(t1,t2),t3)]= is the same as [f(t1, f(t2,%3))]2. Now considering arbitrary do-

19

main members [tq]z,[t2]z, and [t3]=, the definition of Z implies that

ZIfIELfI([t) e, t2)e), [Es)e) = [F(F(t1,t2) . t3)]e,

and likewise Z[f|([t1]2, ZIfI([t2)z, [t3]2)) is [f(t1, f(t2,t3))]2, and thus every in-
stance of associativity is satisfied by Z, and so is the associativity axiom. Sim-
ilar arguments justify commutativity (VaVyf(z,y) = f(y,x)) and idempotence
(Vo f(x,x) =x).

We have thus exhibited Z satisfying 3 U .A but not satisfying o for any
such that X H | .o @, as desired. Q.E.D.

5 Effective Decidability of the Congruence/ACI Rule Set

We next show that the rule set E U ACI is local (Feyaer = IFeyacr), im-
plying immediately that the inference relation b 4c; on ground equations is
polynomial-time decidable. It then follows by Theorem 1 that entailment from
ground premise sets in theory A is polynomial-time decidable.

The rule-set property of locality has been shown undecidable in general [11],
but sub-classes of the local rule sets (inductively local rule sets [11] and bounded
local rule sets [20]) have been shown to be automatically recognizable with pro-
cedures that fail to terminate on inputs representing local rule sets outside the
sub-class. We have not been able to get these procedures to terminate on our
rule set E'U ACI, leaving unresolved(prior to this work) the question of locality
for this rule set.

A semantic proof of locality can be constructed by showing that the par-
tial model constructed by locally restricted inference can always be extended
(embedded) to a full model. This technique was first presented in [10] and ex-
ploited in analyzing theory combinations in [24,14]. The latter work can be
used to handle the uninterpreted function symbols present in our setting, and
Dedekind-MacNeille completion [17] can be used to show the semantic embed-
dability needed to construct the full model in the case where we have only one
ACI function symbol [1]. However, we do not know of work extending Dedekind-
MaeNeille completion to multiple function symbols (i.e. multiple partial orders).
A single completion step on one partial order destroys the ordering informa-
tion in the others. Due to the difficulty we encountered constructing a semantic
proof along these lines, we instead present a direct syntactic proof of locality.
This proof sheds syntactic insight on why local restriction does not change the
inference relation, and is of value even if the semantic proof can be repaired. For
the remainder of this section, we use the shorthand K to abbreviate E'U ACI
for readability.

One approach to proving locality of K is to prove semantic completeness
of the restricted inference I,.. However, unlike in the pure congruence closure
case (IF), the model-theoretic completeness proof of Theorem 1 does not adapt
directly to the Y (X, ¢)-restricted inference of I-,. The proof encounters diffi-
culties in defining ACI function symbols. In the pure congruence-closure case,
function symbols can be arbitrarily defined in cases that produce terms in equiv-
alence classes outside of Y (X,), producing a simple finite model, but the ACI

20

theory restricts these definitions in complex ways. Due to the difficulties we en-
countered with a semantic approach, we instead prove locality with a syntactic
analysis below.

For this proof, we first note that our definitions immediately imply that
Y e @ implies X |k, » @ for some sufficiently large finite term set 7 containing
Y(X U{p}) and all terms appearing in the derivation underlying X b . It
follows that we can prove locality by proving that, for any ground premise set X
and ground equation ¢, and every finite subterm-closed term set 7" containing
at least V(X U{p}), Y lFx ¢ if and only if Xl . (*)

We will prove (*) by induction on the construction of 7" from 7 (X U {¢}).

(Base case) T = Y(X U{}). In this case, the claim () holds trivially.

(Inductive case) We suppose the claim (*) holds for a subterm-closed term set
Y containing 7(X U {¢}). Let a be an arbitrary term not in 7" such that every
proper subterm of o is in Y. We show that the claim (*) holds with the set
Y =Y U{a} in place of 7. Here, we will assume that « is g(tq,t2) for some
(ACI-labeled or not) g and terms t; and t5; the other arity cases are similar but
do not include the ACI possibility.

To show this, we consider all derivations from X using rules in K within
Y, characterizing every atomic formula that can appear in such a derivation.
We show by a second, nested induction on the length of the derivation that
the derived formula must fall into one of several classes. To define these classes
of formula, we need some new notation. In order to use inference within 7" to
characterize the terms ¢ such that ¢ 2, o can be proven within 77, if g is ACI
we define the g-closure of the set {tq,t2}, written g({t1,#2}), to be the closure
of the set {t;,t2} under the following two operations:

e For any term y in the set, add every z such that X1, » 2=, .
e For any terms x and y in the set, add g(x, y) if that term is in 7.

In order to use inference within 7 to characterize those equations that are prov-
able in 77 between o and other terms e in 7', we define {{g(t1,t2) =€)} to hold
if one of the following holds about inference with 7

e YViFgrtiZ,e A XlFertaZe A ee€g({t1,t2}), and g is ACI, or
o NlFgrozi =t A Elrgraa=ta A Xlg sy g(xry,z2) = e for some
terms 1 and xs.
These properties ensure that o« = e will be inferred in 7. The first bullet char-
acterizes equations by ACI inference and the second characterizes standard con-
gruence inference. We will need the following lemmas about these definitions.
Lemma 1. If ((g(t1,t2) = e1)) then {(g(t1,t2) = e2)) iff Vb + €1 = ea.

We are now ready to characterize the classes of formulas that can appear in
derivations from X using rules K within 7. Every such formula must fall in one
of the following classes!:

! In some cases class C2 will be contained in class C3; otherwise, all the classes are
disjoint.

21

[C1] A formula derivable from X using rules K within 7",
[C2] A reflexive = or =, formula about a, for any ACI f,

[C3] An atomic formula 3, excluding <, local to 7" and mentioning « where
the same atom is derivable within 7 with « replaced by some term e € T
(so that X Ik, + [e/a]3), where {g(t1,t2) = €)},

[C4] An atom e=_ « for e € g({t;,12}), or
[CH] An atom o=, ¢ for which both ¥ Ik, » 1 %, ¢ and X I » 2 =% €.

Classes C4 and C5 are considered empty if g is not labeled ACI. These
classes cover all formulas that can appear in derivations under I, . This can be
verified by induction on the length of the derivation, checking that each inference
rule preserves the claim. We discuss the critical (ACl-antisym) inference rule here
as an example. The rule antecedents are x =,y and y =, z. We must show that
the consequent = = y falls in one of the five given classes. There are several cases
to consider (up to symmetries):

1. a & {z,y}. Both antecedents and then the conclusion nust be in class C1.

2. * =y = . The conclusion is in class C2.

3. z# y=a, f #g. Then z € T. Both antecedents must be in class C3. So
there must be ey € 1 such that {g(t1,¢2) = e1)) and X by » x =, e;. Likewise
there must be e; € 1" such that ((g(t;,t5) =ey)) and X' Ik, ey %, z. It
follows from Lemma 1 that X |-, » €1 = ea. It then follows that X Ik,
x =, ey using that (eq-congr) is in K, and that X |- » €2 = x using that
(aci-antisym) is in K. Lemma 1 then implies {{g(t1,t2) = x)). But then since
Y lF g » x = x, the rule conclusion x = « satisfies the C3 class invariant.

4. ¢ # y=a, f = g. Then z € Y. Antecedent = %, o is in class C4, and
antecedent o %, r is in class C5. We need to show the conclusion r = «
is in class C3. To do so, we exhibit e € ¥ such that ¥ |-y » * = e and
{{g(t1,t2) = €)}. From the antecedents, using the induction hypothesis about
classes C4 and C5, we have X Iy » t1 %, x and X' Iy t2 %, x, as well as
x € G({t1,t2}). Then by definition, {{g(t,,t,) = =)}, so x is the desired e.

These cases together demonstrate that any instance of (ACI-antisym) in a deriva-
tion satisfying the claim up to that point will extend that derivation with a
formula that also satisfies the claim. Together with similar analyses of all the
other rules [12], we conclude that every formula in a derivation from X using K
within 7 falls in one of these five classes.

Since every formula in these classes either mentions o (classes C2 to C5)
or is derivable within ¥ (class C1), we have shown that for any ¢ local to 7,
Yk ¢ @ if and only if X IFx 4 @, which together with our (outer) induction
hypothesis implies that (x) holds for 7', as desired. We have thus shown the
following theorem.

Theorem 2. The rule set E U ACI is local. The inference relation b | acr 18
polynomial-time decidable.

The techniques discussed in [20] provide a straightforward ©(n®) procedure
via the locally restricted inference process.

22

6 Integrating ACI Functions into Other Rule Sets

We now turn our attention to general equational rule sets for which we may
wish to designate some of the function symbols as ACI. We suppose an arbitrary
equational rule set R is known to be local and consider the question of whether
R U ACI, with some function symbol f labeled to be ACI, remains local.

In fact, it is easy to see that the addition of ACI in R U ACI will not
in general preserve locality. Rules in R may contain specific nested applica-
tions of the ACI-labeled function symbol f, and if the local expressions con-
tain ACI-equivalent terms that don’t match that specific nesting, the rules in-
volved will not be part of derivations. For example, the single-rule local rule
set {P(f(x, f(y,2))) — Q(z)} can draw no conclusions with local derivations
on premise set P(f(f(a,b),c)), but upon expanding the rule set with the ACI
rules, can conclude Q(c). Rules like this one are using the function symbol f in
a manner somehow inconsistent with the assumption that f is ACI.

As an example, consider the following local rule set for binary intersections
and unions [11]:

— = Cx rCyAhyCz —- =z Cz
— yCxlUy xrCz yz = aly Lz — xCaxlUy
— Ny Cuy zCux zCy - zCxnNy — Ny Cx

The techniques in this section are designed to enable the addition of complete
inference from the ACI properties for intersection and union to rule sets like
this without losing the locality property that ensures efficient inference, by re-
formulating the ACI function symbols (in this case U and M) as being applied
to single arguments that are tuples of terms, where ACI properties are managed
by equating ACI-equivalent tuples. What we show here is that a rule set that is
local before adding these ACI properties on tuple argument, will remain so after
this addition is made. The remainder of this section formalizes this idea. As an
introduction, consider the tuple formulation of the rule set just presented:

— xCux rCy AyCz - xCz VreldrCz — [JACz
TeX = xCJA red = [NACx Ve XzCx — zCNA
Here, the A rule variable represents a tuple of terms, with implicitly ACI func-
tion symbols | J and () being applied to such tuples. Rule antecedents involving
€ with tuples are abbreviations as discussed below. The rule set is restricted
from accessing the tuple structure in any other way than with the types of €
antecedents shown here and formalized below. What we prove here, with some
substantial difficulty, is that if the rule set is local before this transformation,
without the ACI properties on its tuples, it will remain local when the ACI
properties are enforced.

6.1 Every/Some ACI Rule Sets

Here, we propose to limit the ways that the rule set R can mention the ACI
function symbols to ensure that ACI inferences do not interact badly with the
rules. Our proposal below supports two interactions between ACI terms and

23

rules: testing that every (nested) argument to an ACI function symbol satisfies
a predicate, and forcing a variable to represent an arbitrary (nested) argument to
the ACI symbol. In addition, we note that any number of ACI function symbols
‘an be represented if the theory supports a single ACI “tupling” function symbol.
So we limit consideration to implementing a single ACI function symbol for
tupling.

Kinds. In order to enforce separation between the ACI inference and the
arbitrary rule set R, we introduce the concept of “kind” into the representation.
For simplicity here, without loss of generality, we assume there are just two kinds:
basic-term (B) and tuple (7). Every function symbol and predicate symbol has
a signature over the kinds, so that every well-formed term has a syntactic kind.
Applications of functions and predicates to expressions of the wrong kind are
considered ill-formed. Every variable in a rule also has a kind and rule instances
‘an only be formed by substituting variables with terms of the matching kind.
The equational rules E, contained in any equational R, are assumed duplicated
for each kind, with (eq-congr) present for each signature of function symbol or
predicate symbol. Throughout this section, t, x, ¥, and z are basic-term variables,
and A is a tuple variable.

Tuples. The only expressions of tuple kind are formed from two function
symbols: {t) coerces basic-term t into a (singleton) tuple, and (A; - A2) combines
two tuples. The function symbol () is the only function symbol labeled ACIL
Every predicate symbol that operates on tuple arguments is designated hidden,
i.e. cannot appear in premise sets, and besides equality on tuples the only such
predicate symbols are introduced by the rules for ACI inference (%, Z3, and
Zyp, introduced below). All other predicate symbols are not hidden. The only
function symbols that have tuple arguments have exactly one argument—it is
these function symbols that are implicitly ACI by accepting their arguments in
tuple form. We write = € A by abuse of notation to mean that = is a maximal
basic-term subexpression of the tuple A.

Rule set restrictions. We restrict the rule set R to contain only basic-
term variables and expressions, except for the equational rules in E for tuples,
mentioned above, and for the specific enrichment to use tuples that we propose
next. We allow tuple variables in rules in the following forms:

e as sub-expressions of a basic-term (i.e. as an argument tuple), or
e in “every” or “some” antecedents, as detailed below.

Moreover, we require each tuple variable in a rule to occur at least once as a
sub-expression of a basic-term.

Some. We allow rule antecedents of the form z € A. The basic-term variable
x may be used elsewhere in the rule; this antecedent can be thought of as binding
x for use elsewhere in the rule. Semantically, the “some” antecedent abbreviates
dzs = ({x) - 2).

Every. We allow rule antecedents of the form VxeX P(x) where P is any
one-argument predicate symbol on basic-terms. For notational simplicity here,
we assume P has no other arguments, but the extension to allow arbitrary other

24

basic-term arguments not mentioning x is straightforward. The basic-term vari-
able ¥ must not appear in the rule outside of this antecedent. We think of the
% as binding z locally to this antecedent. Semantically, the “every” antecedent
abbreviates Vo 3z A = ((z) - z) — P(x).

Syntactically, we eliminate “every” and “some” antecedents as follows. In-
troduce a new hidden predicate Z3 of signature (basic-term x tuple) for the
implementation of “some”. For each predicate P appearing in any “every’ an-
tecedent, introduce a new hidden predicate Zyp on tuples, i.e., of signature (tu-
ple). Replace each antecedent x € s with the atom Zs(z, A), and each antecedent
Ve P(x) with the atom Zyp(A). Then, the following rules are added to R; it
is straightforward to verify that these rules are sound under the semantics just
given for “every” and “some” antecedents:

— Z3(x, (A1 - A2)) (Zs-init) — Z5(x, (:

(Za-sub2) Zs(x, Ao) — Z3(x, (A - X)) (Zyp-init) Plx) — Zyp({z))
(Zy_combine) Zyp(A1) N Zyp(Az) — Zop((A1 - Az))

(Z5-subl) Z5(x, A)

3
)
3
)

where the Zyp rules are present once for each predicate P appearing in an “ev-
ery” antecedent.

Definition 6. An every/some rule set is an equational rule set R for the kinds
basic-term and tuple in which every tuple sub-expression is a tuple variable that
occurs within a basic-term expression, and may also occur within “every” an-
tecedents and/or “some” antecedents. The only predicate and function symbols
involving the tuple kind are the tuple-constructors () and (-), implicitly ACI
function symbols (signature tuple— basic-term), and those abbreviated by ev-
ery/some. Each such rule set abbreviates a rule set with no every/some an-
tecedents via the transformation just described.

For our purposes here, it is important to note that an every/some rule set
does not yet have any ACI properties enforced. The rule set will not be able
to infer the equivalence of tuples that are ACI variants of each other, and so
function applications of implicitly ACI function symbols (applied to tuples) will
also not benefit from the ACI properties. All inference on such terms will depend
on the argument order and multiplicity. What we wish to show is that we can
add the ACI properties while preserving the locality of the rule set.

6.2 Adding ACI to Every/Some Rule Sets Preserves Locality

Here we prove that we can add the theory ACI for tuples to any local every/some
rule set R, preserving locality and thus polynomial-time decidability. The proof
is rather technical and carefully constructed. We provide the key major structure
here and refer to our website supplement [12] for many technical verifications
underlying the proof.

Definition 7. For any set of rules R, subterm-closed set of terms T, premise
set X local to T, and positive integer k, and we write Cy. (X, R,Y) for the set of
all formulas derivable from X using R with a derivation local to T of length at

25

most k. We write Bp(X, R,T) for the non-hidden subset of Cy, (X, R, Y). Finally,
we write C(X, R, T) for Uy~ Cr (X, R.T). and likewise B(X,R,T).

We will also need some notation and invariants characterizing exactly when
tuples become related by inference.

Definition 8. Given two sets of basic-term expressions Sy and S and a set of
formulas I', we write (51 C,, S2) € I' if there are equations in I' to make Sy
a subset of Sa, t.e. if for every x € Sy there is y € Sy such that x = y € I'.
Extending this notation to tuple expressions Ay and Ay, we write (A; C,, Ag) € I'
to abbreviate ({x |z € M} C., {y|y € A2}) € I'. Finally, we write (A =., A2) € I

if both (M C., A2) € I and (\2C.,) € I'.

Using this new notation, the locality of a rule set R implies for instance that
B(X,R,Y) =y B(X, R,T") for every subterm-closed 7", premise set X' local to 7,
and 7' containing 7. Here, we introduce the notation =y to represent equality
between two sets of formulas after restricting each set to the formulas local to
Y. We likewise define C .

We can now state the key invariants regarding ACI inference on tuples. These
invariants are stated for any every/some rule set R, subterm-closed 7", premise
set X local to T and positive integer k. We temporarily abbreviate the set of
consequences Cr(X, RUACLY) as I', and C(X, RUACLY) as I'.:

L (ACI-1) A=Ay € I} implies (A; =, A2) € I}, and conversely,
(M =ecq A2) € I, implies A=Az € .

2. (ACI-2) A=, A2 € I}, implies (A C., A2) € Iy, and conversely,

(M C., A2) € Iy, implies Ay %, A2 € .

3. (ACI-3) Zyp(X) € I}, implies P(t) € I}, for every t € A, and conversely,
P(t) € I}, for every t € A implies Zyp(A) € I

4. (ACTL-4) Z5(t',\) € Iy implies t = ' € I}, for some t € A, and conversely,
t=t"€ I} for t € XA implies Z3(t',A) € I'x.

These invariants are easily demonstrated by induction on the length of deriva-
tions for the forward directions, showing that each rule preserves these invariants,
and induction on the tuple structures for the converses. The same invariants,
dropping ACI-2, can be shown replacing R U ACI by R, but in stating ACI-1
using a narrower definition of (A C., A2) that requires directly matching tuple
structure from A; and A, (for lack of ACI rules).

We are now ready to develop the main theorem of this section. We restrict
consideration to a particular local every/some rule set R, arbitrary subterm-
closed term set 77, and premise set X. We first consider the effect on inference
from X using R U ACI when we add a single basic-term to 7. It is in this case
that the locality of the base rule set R comes into play.

Lemma 2. (Basic-term Eztension) For any basic-term expression o, where all
proper subexpressions of a are in T, B(X, RUACL, T U{a}) =y B(X, RUACLT).

26

Proof. The backward containment is immediate because B(,,) is clearly mono-
tone in T, as every derivation local to T is local to any superset of 1.

To show the forward containment, the central proof idea is to observe that if
R 1UACT has a locality violation, then we can construct such a locality violation
for R on a premise set that contains X along with some additional premises
(those non-hidden formulas that could have been derived by ACI if ACI were
in use). Since the property of rule-set locality is a property that applies to all
premise sets, the larger premise set cannot generate a locality violation under
R (i.e. there can be no R-derivable fact from the larger premise set that is not
derivable by locally restricted inference from that premise set).

To formalize this idea, we introduce an enriched premise set X' = B(X, RU
ACIT) and consider the consequences under inference from X’ using rule sets
R U ACI, within the enlarged term set 1 U {a}. The key observation, discussed
next, is that any derivation of a new consequence within 7" using R U ACI will
have to start by using R alone to get the first new consequence within 7. But
R alone cannot get new consequences within 7" as R is local.

We now show the desired forward containment, but for X': B(X', RUACI, YU
{a}) Cv B(X', RUACLY). To show this, suppose for contradiction that the
desired containment is false, so that there must be some formula ¢ local to T in
B(X',RUACL Y U{a}) but not in B(X', RUACILY). In this context, we refer
to formulas local to 7 in B(X’, RUACL Y U {a}) but not in B(X', RUACLY)
as newly derivable formulas; ¢ is a newly derivable formula. Also here we refer
to formulas local to T as local; ¢ is a newly derivable local formula.

Consider any derivation of ¢ from X' using R UACI within YU {a}. We refer
to formulas in the derivation as earlier or later in the derivation according to
their index in the sequence (with lower index corresponding to earlier). Consider
the earliest newly derivable local formula in the derivation, which occurs at
latest at . Then every non-hidden local formula in the (prefix) derivation of
isin B(X', RUACLY) and thus in X', as X' is already closed under R U ACI
within 7. We show that there is a derivation of 8 from X’ using only rules in R,
which contradicts the locality of R (which can’t derive new formulas local to ¥
by using a), to conclude the proof, as argued below.

Observe no instance of a rule in ACI within ’U{a} can mention «, since every
expression in the ACI rules is a tuple expression, and « is not a subexpression
of any tuple expression in 7" U {a}. Thus every formula in any ACI rule instance
used in the derivation of 3 is local to 1.

We now show that 3 is in B(X', R, YU{a}). We show that there is no formula
in the derivation of 8 being considered that can be justified only by an ACI rule,
from the derivation to that point and the premises X’. To show this, we show
that there can be no earliest such formula 5. Supposing, for contradiction, there
is such 7, then 7 is local to T, as just argued for ACI rule instances in the
derivation of 3, and cannot be a member of X’ (or ACI rules would not be the
only justification for). Formula i cannot be a <, formula or it could only be
justified by another ACI rule and thus would not be the earliest choice. Formula
n cannot be a Z3 or Zyp formula or it would not be a possible consequent of

27

an ACI rule. So, n must not be hidden. Thus, 5 is a non-hidden local formula
in the derivation of 3—so, by our choice of 3, we have n € X', the premise
set, contradicting the choice of 1 as requiring justification by an ACI rule. We
conclude from this contradiction that every formula in the derivation of 3 is
either in X’ or can be justified by a rule in R, so 3 is in B(X', R, T U{a}). Since
8 is newly derivable, 8 ¢ B(X',R U ACI,T) and thus 8 ¢ B(X',R,T). This
violates the locality of R, completing our proof that B(X', RUACL, YU {a}) Cr
B(X', RUACLY).

But X' can be replaced by X in this claim, as the inference under R U ACI
within ¥ that constructs X' from X' is already included in both B(,,) closures
being considered. This gives us the desired containment to conclude our proof
of the lemma. Formally,

B(Y',RUACLYU{a})= B(B(X,RUACLT), RUACLTY U{a})
= B(XY,RUACLY U {a})

and likewise

B(X',RUACLT) = B(B(X, RUACLY), RUACLT)
= B(X,RUACLY).

Q.E.D. (Basic-term Extension Lemma)

A separate induction on derivation length is needed to handle extensions
of T by new tuple expressions, leveraging the invariants stated above on tuple

inference ((ACI-1) to (ACI-4)).

Lemma 3. (Tuple Eztension) For any tuple expression «, where all proper

subezpressions of a are in T, B(X, R UACLY U{a}) =r B(X, RUACLY).

Proof. The backward containment is again immediate. We prove the forward
containment by induction on k to show, for all k, B,(X, RUACL Y U{a}) Cr
B(X, RUACLY). Please see our website supplement [12] for technical verification
that each inference rule preserves this property of derivations, leveraging the
tuple invariants (ACI-1) to (ACI-4). Here we discuss in detail the argument for
one example inference rule chosen to illustrates all the key ideas.

Suppose for induction that By_1 (X, RUACL YU {a}) Cr B(X, RUACLY).
Consider a k-step derivation ending in a non-hidden formula ¢ justified by an
instance of an inference rule from the basic rule set R, but not an equational rule
from E. We show that the conclusion of this derivation is a member of B(X, RU
ACLY). We will show (a) every antecedent formula of the inference instance
used is in C(X, R U ACL YY), and (b) the consequent ¢ is local to ¥ and not
hidden. From these two statements we can conclude that ¢ € B(X, RUACL YY)
as desired. To see (b), observe that ¢ is not hidden, so it cannot mention the
new tuple a and so, being local to 7" U {a} must also be local to 7.

Then, to argue for (a), consider an arbitrary antecedent formula § of the
rule instance. We have 8 € Ci_1(X, RU ACLY U {a}) since § appears in a
k-step derivation as an antecedent. Please refer to our website supplement [12]
for details of the induction proof. Q.E.D. (Tuple Extension Lemma)

28

By a simple induction on the construction of subterm-closed set 7 containing

T, these two lemmas directly imply that R U ACI is local.

Theorem 3. For any local every/some rule set R, the rule set RUACT is local.

It follows that R U ACI defines a polynomial-time decidable inference relation.

7

Conclusion

We have shown a local rule set provably providing sound and complete congru-
ence closure with ACI function symbols. We also provide a detailed example
integrating ACI inference into other local rule sets preserving locality.

References

1. Anonymous Reviewer: Personal email communication (March 2013)

2. Bachmair, L., Ramakrishnan, L., Tiwari, A., Vigneron, L.: Congruence closure modulo associa-
tivity and commutativity. FroCoS pp. 245-259 (2000)

3. Bachmair, L., Tiwari, A.: Abstract congruence closure and specializations. In: Proceedings of the
17th International Conference on Automated Deduction. pp. 64-78, CADE-17, Springer-Verlag,
London, UK, UK (2000)

4. Bachmair, L., Tiwari, A., Vigneron, L.: Abstract congruence closure. J. Autom. Reason. 31(2),
129-168 (Dec 2003)

5. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development — Coq'Art:
The Caleulus of Inductive Constructions. SpringerVerlag (2004)

6. Bloniarz, P., Hunt III, H., Rosenkrantz, D.: Algebraic structures with hard equivalence and
minimization problems. J. ACM 31(4), 879-904 (1984)

7. Burris, S.: Polynomial time uniform word problems. Mathematical Logic Quarterly 41(2), 173~
182 (1995)

8. Conchon, 8., Contejean, E., Kanig, J., Lescuyer, S.: CC (X): Semantic combination of congruence
closure with solvable theories. Elec. Notes in Theor. Comp. Science 198(2), 51-69 (2008)

9. De Moura, L., Bjarner, N.: Z3: An efficient smt solver. Tools and Algorithms for the Construction
and Analysis of Systems pp. 337-340 (2008)

10. Ganzinger, H.: Relating semantic and proof-theoretic concepts for polynomial time decidability
of uniform word problems. In: Logic in Computer Science, 2001, Proceedings. 16th Annual IEEE
Symposium on. pp. 81-90. IEEE (2001)

11. Givan, R., McAllester, D.: Polynomial-time computation via local inference relations. ACM
Transactions on Computational Logic 3, 521-541 (Oct 2002)

12, Hu, T., Givan, R.: Additional prool details for ADDCT 2013 paper submisison.
https://engineering. purdue.edu/~relation/addect13.html (2013)

13. Hunt III, H., Rosenkrantz, D., Bloniarz, P.: On the computational complexity of algebra on
lattices. SIAM Journal on Computing 16(1), 129-148 (1987)

14. Thlemann, C., Sofronie-Stokkermans, V.: On hierarchical reasoning in combinations of theories.
In: Automated Reasoning, pp. 30-45. Springer (2010)

15. Kapur, D.: Shostak’s congruence closure as completion. In: Proceedings of the 8th International
Conference on Rewriting Techniques and Applications. pp. 23-37. RTA 97, Springer-Verlag,
London, UK, UK (1997)

16. Kozen, D.: Complexity of finitely presented algebras. In: Proceedings of the ninth annual ACM
symposium on Theory of computing. pp. 164-177. STOC 77, ACM, New York, NY, USA (1977)

17. MacNeille, H.M.: Partially ordered sets. Trans. Amer. Math. Soc 42(3), 416-460 (1937)

18. Mayr, E., Meyer, A.: The complexity of the word problems for commutative semigroups and
polynomial ideals. Advances in mathematics 46(3), 305-320 (1932)

19. MecAllester, D.: Ontic: A Knowledge Representation System for Mathematics, MIT Press, Cam-
bridge, MA (1989)

20. MecAllester, D.: Automatic recognition of tractability in inference relations. Journal of the ACM
40(2), 284-303 (April 1993)

21. Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. Journal of the
ACM 27(2). 356-364 (April 1980)

22, Rehof, J., Mogensen, T.: Tractable constraints in {inite semilattices. Science of Computer Pro-
gramming 35(2), 191-221 (1999)

23. Shostak, R.E.: An algorithmn for reasoning about equality. Communications of the ACM 21(7),
583-585 (Jul 1978), http://doi.acm.org/10.1145/359545 . 369570

24, Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In: Automated

Deduction-CADE-20, pp. 219-234. Springer (2005)

29

Automatic Decidability for Theories with
Counting Operators

(Presentation-only paper)

Elena Tushkanova!'2, Christophe Ringeissen®, Alain Giorgetti*?, and
Olga Kouchnarenko!-?

! Tnria, Villers-les-Nancy, F-54600, France
2 FEMTO-ST Institute (UMR 6174), University of Franche-Comté,
Besancon, F-25030, France

The full paper will appear in the proceedings of the 24th
International Conference on Rewriting Techniques and
Applications (RTA 2013), published as LIPIcs proceed-
ings, http://www.dagstuhl.de/en/publications/lipics

1 Introduction

Decision procedures for satisfiability modulo background theories of classical
datatypes are at the core of many state-of-the-art verification tools. Designing
and implementing these satisfiability procedures remains a very hard task. To
help the researcher with this time-consuming task, an important approach based
on rewriting has been investigated in the last decade [2, 1]. The rewriting-based
approach allows building satisfiability procedures in a flexible way by using a
general calculus for automated deduction, namely the paramodulation calculus [9)
(also called superposition calculus). The paramodulation calculus is a refutation-
complete inference system at the core of all equational theorem provers. In general
this calculus provides a semi-decision procedure that halts on unsatisfiable inputs
by generating an empty clause, but may not terminate on satisfiable ones. However,
it also terminates on satisfiable inputs for some theories axiomatising standard
datatypes such as arrays, lists, etc, and thus provides a decision procedure for
these theories. A classical termination proof consists in considering the finitely
many cases of inputs made of the (finitely many) axioms and any set of ground
flat literals. This proof can be done by hand, by analysing the finitely many forms
of clauses generated by saturation, but the process is tedious and error-prone. To
simplify this process, a schematic paramodulation calculus has been developed [5]
to build the schematic form of the saturations. It can be seen as an abstraction
of the paramodulation calculus: If it halts on one given abstract input, then the
paramodulation calculus halts for all the corresponding concrete inputs. More
generally, schematic paramodulation is a fundamental tool to check important
properties related to decidability and combinability [6].

To ensure efficiency, it is very useful to have built-in axioms in the calculus,
and so to design paramodulation calculi modulo theories. This is particularly

30

important for arithmetic fragments due to the ubiquity of arithmetics in ap-
plications of formal methods. For instance, paramodulation calculi have been
developed for Abelian Groups [4, 7] and Integer Offsets [8]. In [8], the termination
of paramodulation modulo Integer Offsets is proved manually. Therefore, there
is an obvious need for a method to automatically prove that an input theory
admits a decision procedure based on paramodulation modulo Integer Offsets.

In this paper, we introduce theoretical underpinnings that allow us to automat-
ically prove the termination of paramodulation modulo Integer Offsets. To this
aim, we design a new schematic paramodulation calculus to describe saturations
modulo Integer Offsets. Our approach requires a new form of schematization
to cope with arithmetic expressions. The interest of schematic paramodulation
relies on a correspondence between a derivation using (concrete) paramodulation
and a derivation using schematic paramodulation: Roughly speaking, the set of
derivations obtained by schematic paramodulation over-approximates the set of
derivations obtained by (concrete) paramodulation.

Our approach has been developed and validated thanks to a proof system [10]
implemented in the rewriting logic-based environment Maude.

2 Paramodulation Calculus

As in [10] we consider only unitary clauses, i.e. clauses composed of at most one
literal. The Unitary Paramodulation Calculus, denoted by UPC [10] corresponds
to the standard paramodulation calculus restricted to the case of unit clauses.

The paramodulation-based calculus UPC; defined in [8] adapts the paramodu-
lation calculus UPC to the theory of Integer Offsets, so that it can serve as a basis
for the design of decision procedures for Integer Offsets extensions. Technically, the
axioms of the theory of Integer Offsets are directly integrated in the simplification
rules of UPC;. The theory of Integer Offsets is axiomatized by the set of axioms
{VX.s(X)#0,VX,Y.s(X)=s(Y)=> X =Y,VX. X #s"(X) forall n>1}
over the signature X := {0 : INT,s : INT — INT }. Compared to [3], our theory of
Integer Offsets does not consider the predecessor function. Following [8, Section
5], a possible Integer Offsets extension is the theory LLI of lists with length
whose signature is X'y = {car : LISTS — ELEM, cdr : LISTS — LISTS, cons :
ELEM X LISTS — LISTS, len : LISTS — INT, nil :— LISTS, 0 :— INT, s : INT — INT}
and whose set of axioms Az (LLI) is {car(cons(X,Y)) = X, cdr(cons(X,Y)) =
Y, len(cons(X,Y)) = s(len(Y)), cons(X,Y") # nil, len(nil) = 0}.

3 Schematic Paramodulation

The Schematic Unitary Paramodulation Calculus SUPC is an abstraction of
UPC. Indeed, any concrete saturation computed by UPC can be viewed as an
instance of an abstract saturation computed by SUPC [6, Theorem 2|. Hence, if
SUPC halts on one given abstract input, then UPC halts for all the corresponding
concrete inputs. More generally, SUPC is an automated tool to check properties
of UPC such as termination, stable infiniteness and deduction completeness [6].

31

SUPC is almost identical to UPC, except that literals are constrained by
conjunctions of atomic constraints of the form const(x) which restricts the instan-
tiation of the variable x by only constants. An implementation of Paramodulation
and Schematic Paramodulation calculi UPC and SUPC is presented in [10].

In the following, we extend the schematic calculus SUPC for UPC to get a
schematic calculus for UPC;, named SUPC;.

4 Schematic Paramodulation Calculus for Integer Offsets

This section introduces a new schematic calculus named SUPC;. It is a schema-
tization of UPC; taking into account the axioms of the theory of Integer Offsets
within a framework based on schematic paramodulation [6, 10].

The theory of Integer Offsets allows us to build arithmetic expressions of the
form s™(t) for n > 1. The idea investigated here is to represent all terms of this
form in a unique way. To this end, we consider a new operator s™ : INT — INT
such that s (¢) denotes the infinite set of terms {s™(¢) | n > 1}. Let us introduce
the notions of schematic clause and instance of schematic clause handled by
SUPC;. These notions extend the ones used in [6] for the schematization of PC.

Definition 1 (Schematic Clause) A schematic clause is a constrained clause
built over the signature extended with sT. An instance of a schematic clause is
a constraint instance where each occurrence of st is replaced by some s™ with
n>1.

The calculus SUPC; takes as input a set of schematic literals, G, that
represents all possible sets of ground literals given as inputs to UPC:

Go={L,z=y | const(z,y),z #y | const(z,y),u=s"(v)e}
UUses, (@1, m0) = 20 || const(zo,1,...,20)}

where u, v are flat terms of sort INT whose variables are all constrained (in ¢),
and x,y are constrained variables of the same sort.

The calculus SUPC; is depicted in Fig. 1. It re-uses most of the rules of
SUPC — Figs. 1(a) and 1(b) — and complete them with one new contraction rule
named Schematic Deletion and two reduction rules — presented in Fig. 1(c) —
which are simplification rules for Integer Offsets.

Whenever a literal is generated by superposition or simplification, the rewrite
system Rst = { st(s(z)) = st (z), s(s*(z)) — sT(z), st (sT(z)) = st (z) } is
applied eagerly to simplify terms containing s™. The rewrite system Rs* is also
applied in the Schematic Deletion rule to implement a form of subsumption check
via a morphism 7 replacing all the occurences of s by st (7 (s(t)) = s (n(¢)) for
any t, w(x) = z if x is a variable).

It is important to note that SUPC; may diverge without the new Schematic
Deletion rule. To illustrate this point, let us take a look at the theory of
lists with length. In fact, the calculus generates a schematic clause len(a) =
s(len(d))||const(a,b) which will superpose with a renamed copy of itself, i.e. with

32

fulearlle u=ty

Superposition (] s o A D)
if 1) o(u) £ o(t), i) o(l[u']) £ o(r), and
iii) «’ is not an unconstrained variable.
!
Reflection % if o(v) is satisfiable.

Above, u and v’ are unifiable and o is the most general unifier of v and u’.

(a) Schematic expansion inference rules

SU{L|¢, L[4}

Subsumption SU{L[)
if a) L € Az(T), v = () and L' is an instance of L; or b)
L' =0(L), ¥ = 0o(¢), where o is a renaming or a mapping
from constrained variables to constrained variables.
e SU{C['le,l =1}
Simplification SU{Co Mo T=17
if i)l =r e Ax(T), i) I' = o(l), iii) o(l) > o(r), and
iv) C[l'] > (a(l) = o(r)).
Tautology L{USZM
L
Deletion M if ¢ is unsatisfiable.

S

chematic De SU{C"|le, Cls* ()]]Iv}
Sehematic Del. =g RO (]1v)

if o(7(C") Jpst) = C[sT(t)], o(p) =1, for a renaming o.

(b) Schematic contraction inference rules

SU{s(u) = s(v)|¢}
Rl SU {u=oe}
Ro SU{s(u) = t[le,s(v) = t|v} if s(u) > t,s(v) > t,u > v

SU{s(v) = tllvh,u= vl A p}

Above, all the variables in u, v,t are constrained.

(c) Schematic ground reduction inference rules

Fig. 1: Inference rules of SUPC

33

len(a’) = s(len(b')) ||const(a’,b") to generate a schematic clause of a new form
len(a) = s(s(len(b'))) ||const(a,b’). Without the Schematic Deletion rule this pro-
cess continues to generate deeper and deeper schematic clauses so that SUPC will
diverge. The Schematic Deletion rule applies to the theory of lists with length since
G already contains the non-flat schematic literal len(a) = s™(len(b))||const(a, b).

As in [5, 6], we are interested in satisfying the following properties:

— Any clause in a saturation generated by the paramodulation calculus with any
possible input is an instance of a schematic clause in a saturation generated
by the schematic paramodulation calculus with the input Gy.

— The termination of the schematic paramodulation calculus with the input
G implies the termination of the paramodulation calculus with any possible
input.

The new form of schematization introduced for arithmetic expressions requires
adapting the proofs done for the standard case [11]. Our schematic paramodulation
calculus for Integer Offsets provides us with an automatic proof method for the
theories considered in [8], where the termination proofs are done manually.

References

1. A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz. New results on rewrite-based
satisfiability procedures. ACM Trans. Comput. Logic, 10(1):1 — 51, 2009.

2. A. Armando, S. Ranise, and M. Rusinowitch. A rewriting approach to satisfiability
procedures. J. Inf. Comput, 183(2):140 — 164, 2003.

3. Maria Paola Bonacina and Mnacho Echenim. On Variable-inactivity and Polynomial
T-Satisfiability Procedures. J. Log. Comput., 18(1):77-96, 2008.

4. G. Godoy and R. Nieuwenhuis. Superposition with completely built-in abelian
groups. Journal of Symbolic Computation, 37(1):1-33, 2004.

5. C. Lynch and B. Morawska. Automatic decidability. In LICS, pages 7-16, Copen-
hagen, Denmark, July 2002. IEEE Computer Society.

6. C. Lynch, S. Ranise, C. Ringeissen, and D.-K. Tran. Automatic decidability and
combinability. J. Inf. Comput, 209(7):1026-1047, 2011.

7. E. Nicolini, C. Ringeissen, and M. Rusinowitch. Combinable extensions of Abelian
groups. In R. Schmidt, editor, CADE, volume 5663 of LNCS, pages 51-66. Springer,
2009.

8. E. Nicolini, C. Ringeissen, and M. Rusinowitch. Satisfiability procedures for
combination of theories sharing integer offsets. In S. Kowalewski and A. Philippou,
editors, TACAS, volume 5505 of LNCS, pages 428-442. Springer, 2009.

9. R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In J. A.
Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, pages
371-443. Elsevier and MIT Press, 2001.

10. E. Tushkanova, A. Giorgetti, C. Ringeissen, and O. Kouchnarenko. A rule-based
framework for building superposition-based decision procedures. In F. Duran, editor,
WRLA, volume 7571 of LNCS, pages 221-239. Springer, 2012.

11. E. Tushkanova, C. Ringeissen, A. Giorgetti, and O. Kouchnarenko. Automatic
Decidability for Theories with Counting Operators. In F. van Raamsdonk, editor,
RTA’13, 2013.

34

Utilizing Higher-order Unifiability Algorithms in
the Resolution Calculus

Tomer Libal

Microsoft Research - Inria Joint Center / Ecole Polytechnique
1 rue Honoré d’'Estienne d’Orves, Palaiseau, 91120 France
tomer.libal@inria.fr

Abstract. Unifiability algorithms for higher-order logic are algorithms
which decide the unification problem for sub-classes of higher-order logic
by providing a witness. They contrast with unification procedures by
deciding unification problems of infinitary nature, which might have in-
finitely many most general unifiers. Unification procedures for these sub-
classes return a complete set of these unifiers and do not terminate.
The common practice in automated deduction for higher-order logic is
to utilize unification procedures and to force their termination by re-
stricting the size of the generated unifiers. The unifiability algorithms,
which are complete for certain sub-classes, allow us to have a more se-
mantical approach. In this paper we claim that the standard resolution
calculi for higher-order automated deduction do not take full advantage
of the strengths of these algorithms and suggest a new calculus. We prove
that this calculus can have an exponential speed-up over the traditional
calculi.

1 Introduction

When one needs to refute higher-order formulas, the constrained resolution cal-
culus [8] is normally preferred. Since there are possibly infinitely-many most-
general unifiers, one can either eagerly compute a finite number or postpone
the application of the unification rules. Another problem is the undecidability
of the unifiability problem of higher-order terms [6]. The two common solutions
to this problem are to either restrict the depth and size of the searched-for uni-
fiers or again, to postpone the application of the unification rules and decrease
the chances of non-termination. There also exist algorithms which decide the
unifiability question for sub-classes of higher-order logic, such as for free groups
[15] and semi-groups [14], monadic second-order [4] and bounded higher-order
[20]. The main reasons these algorithms are not used in practice in automated
deduction is the NP-hardness of the problems they solve and the absence of
specialized calculi which can take advantage of their special feature, which is
to decide the unifiability problem by giving a finite set of witnesses. Although
the problems they solve are NP-hard, it was shown that at least with regard to
most of the above problems, they are in fact in NP [12] which might imply their

35

usability in automated deduction in practice. Naive uses of the constrained reso-
lution calculus can run into one of the following two problems: If the algorithms
are used just for trimming non-unifiable branches by deciding if there exists a
unifier, then we face serious efficiency problems as the sets of constraints keep
growing. On the other hand, an eager computation of the finite set of witnesses
suffers from the "locality” property - the order of choosing clauses to resolve
upon, even if all are required for the refutation, greatly affects the efficiency
of the search. In this paper we introduce a specialized form of the constrained
resolution calculus for utilizing efficiently these unifiability algorithms and for
eliminating the "locality” property. Although we were not been able to show
that the "locality” property actually harms the completeness of the search for a
refutation, we have been able to show an exponential speed-up of the presented
resolution caleulus.

This paper is organized as follows. In the first section we introduce the ab-
stract notions of unification and unifiability algorithms and the traditional cal-
culus which utilizes higher-order pre-unification, the constrained resolution cal-
culus. The second section is used for the presentation of the hybrid resolution
ralculus. We prove in this section its relative completeness with regard to the
constrained resolution calculus. In the last section we present an infinite sequence
of sets of clauses, on which the hybrid resolution calculus finds a refutation ex-
ponentially faster than the constrained resolution calculus.

2 Preliminaries

2.1 Higher-order Unification

In this section we will define the general form of unification and unifiability
algorithms. We assume our language to be the simply typed lambda calculus [3]
whose type set contains at least the type o over a signature containing at least the
logical symbols T, F, =, \V and IT,, for each type o with types 0,0,0 — 0,0 = 0 —
o and (o0 — 0) — o respectively and the equality symbol =, of type o - a — 0
for each type a. The equality symbol = denotes syntactic equality between terms.
variables are denoted by the symbols x, y, z while constant symbols are denoted
by the rest of the lowercase Latin letters. Both might occur with sub or super-
scripts. The notions of free and bound variables are defined as usual. The head
of a term is its topmost symbol which is not a A-binder. A term whose head
is a variable is called a flez term while a term whose head is a constant or a
bound variable is called a rigid term. A formula is any term in the language
which is of type o. A literal is a formula labeled by an intended truth value and
is denoted by [f]" where f is a formula and v € {T,F}. A clause is a disjunction
LyV...VL, of literals with V having the usual properties (associativity, etc.), [T|F
and [F|T are the identity elements and [T]T and [Ff are the absorbing elements.
Except for the above-mentioned terms, the rest of the terms will be denoted
in polish notation. A substitution is a mapping o of variables to terms of the
same type such that for some finite set of variables S, o(y) = y for all y & S.
We extend the notion of substitutions to apply also to arbitrary terms as usual.

36

The composition of substitutions is defined as usual and is denoted by o. The
substitutions mentioned in this paper are all normalized [22]. We assume all
terms to be S-normalized and in n-expanded form unless otherwise stated (see
for example [21]).

Definition 1 (Unification constraints). A unification constraint is a literal
of the form [t =, s|f where t and s are terms of type a.

Since the type a of the symbol =, can be derived from the types of its
arguments, we will omit the subscript o from this symbol in the rest of the
paper.

Definition 2 (Unification problems). A unification problem is a disjunction
of unification constraints. Given any clause, the unification problem associated
with it is the disjunction of unification constraints in this clause.

Ezample 1. The unification problem associated with the clause [z(b)]T V [za =
fobFF v [a = yf is [za = fgb]" V [a = y]".

Definition 3 (Solved forms). A unification constraint in n-normal form [z =
t]F is in solved form in a unification problem S if x does not occur elsewhere in
S or in t. A unification problem P is in solved form if it contains only solved
unification constraints. For a unification problem P in solved form, we denote
by op the substitution [t/x | [x = t|F € P|. A unification problem is in pre-solved
form if it contains only solved constraints or constraints of the formt = s where
both t and s are flex terms. The substitution op in this case is opr onp where P’
is the sub-problem containing all solved constraints and np is a fizred substitution
mapping all variables in the problem to fized terms according to the types of the
variables [9].

Ezample 2. The problem [z = fa|¥ v [y(ga) = zb|F is in pre-solved form while
[z = fa]F is in solved form.

Definition 4 (Unifiers). Given a unification constraint [t = s|¥, a substitution
o is called a unifier for it if o(t) = o(s). Let the relation =, extends = such that
t =, s if eithert = s or both t and s are flex terms, then a substitution o is called
a pre-unifier of the unification constraint if o(t) =, o(s). A substitution is called
a (pre- Junifier of a unification problem if it (pre-)unifies all the constraints in
it.

Definition 5 (Most general unifiers). A substitution o is more general than
a substitution 6, denoted o < 8 if there is a substitution &, such that cod =6. A
unifier for a unification problem is called most general if there is no other unifier
of the problem, up to renaming of free variables, which is more general.

Ezample 3. The substitution [fy/x] is a most general unifier of the problem
[gra = g(fy)a]F. Another, less general unifier, is [a/y, fa/z].

37

Definition 6 (Complete sets of unifiers). Given a unification problem P,
we denote by unifiers(P) the set of all its unifiers. The set @ is called a
complete set of unifiers for P if Q@ C unifiers(P) and for every substitution
o € unifiers(P), there exists a substitution 6 € @ such that 6 < o.

Definition 7 (Unification transformations). A unification transformation
is a rule of the form

cvD
a(C'v D)

where D and D' are unification problems and C' is a clause without unification
constraints, o is a substitution such that unifiers(a(C'v D')) C unifiers(C'V

D).

Definition 8 (Unification procedures). A unification procedure for a class
of problems S is any set of unification transformations T such that for every
unification problem P € S and unifier o € unifiers(P), there is a sequence of
transformations from T on P resulting in a solved problem P' such that op < o.
A pre-unification procedure is defined similarly where P' is a problem in pre-
solved form.

The most famous higher-order pre-unification procedure is Huet’s [9]. In gen-
eral Higher-order unification procedures do not terminate. Nevertheless, there
are procedures for restricted classes, such as for problems with unifiers of re-
stricted depth, which terminate.

Definition 9 (Unifiability algorithms). A unifiability algorithm for a class
of problems S is any set of unification transformations T together with a function
II from problems in S to well-founded measures such that for every unification
problems P, P' € § such that P' is obtained from P using a rule in T, II(P') <
II(P) and such that if P is unifiable, we can obtain a problem P’ in solved form.
We will refer to this function, when the unifiability algorithm is given, just as

II.

Definition 10 (Measure’s bound). Given a function II as above, we define
its bound for a given problem P as the maximal number of steps which can be
taken before the measure II(P) reaches its minimal element. We will denote this
value by bound(II(P)).

Note that a unifiability algorithm effectively decides the unifiability of a
unification problem in its class.

The most well-known unifiability algorithm is for string unification [14].
Other algorithms are for monadic second-order unification [4] and several algo-
rithms for context [5,19], distributive [18], linear [11] and bounded higher-order
unification [20, 13].

38

2.2 Huet’s Constrained Resolution Calculus

In this section we will introduce the constrained resolution calculus [8].
An important aspect of clause normalization is Skolemization. We will use
the Skolem terms defined in [17]

Definition 11 (Skolemization). Given a clause C, let 7", .., z0" be the set of
all free variables occurring in C' where oy is the type of variable x; for 0 < i <n,
then a Skolem term of type o for C', which will be denoted by s, is the term
flxy, .. xn) for f a new function symbol of type aqy — .. = oy, — .

The constrained resolution calculus is based on literals and clauses. Therefore,
it is necessary to have rules for the normalization of terms into clauses.

Definition 12 (Simplification rules). The set of simplification rules, which
are used for normalizing terms into clauses, is given in Fig. 1.

cCv[-D]" . cCv[-Dff .
C VD =) C V(D =)
CV[DivDy" . CV[DivD:] L, CVv[DivD)] .
CV [Di]" V [Da]* v CV[DiJf (Vi) CV[Daff (ve)
CV[IA" 1, CVLAF _p,
CV [Aze]T () CV [Asa]" ar-)

1. z is a new variable not occurring in A or C
2. s, is a new Skolem term of type «

Fig. 1. Simplification Rules

The resolution and factorization rules, given next, correspond to cuts and
contractions over terms which are not syntactically equal and their correctness
is based on the unifiability of the added unification constraint.

Definition 13 (Resolution and factorization rules). The resolution and
factorization rules are given in Fig. 2.

(AP Ve [BPVD o APVIBPVO
CVDVA=BF 0% [ApvVCVIA=B

" (Factor)

Fig. 2. Resolution and factorization rules

Since the simplification rules eliminate logical constants, such symbols cannot
occur inside unification constraints. Therefore, a search for unifiers containing

39

logical symbols will always fail. Huet’s solution to the problem was to add split-
tings rules which try to instantiate set variables with different terms that contain
logical symbols.

Definition 14 (Splitting rules). The set of splitting rules is given in Fig. 3
where Y, Z and z are new variables and s, a new Skolem term.

CVIXE)

il (s?) . (s7)
CVYTVI[Z]TV[X(T) = (Y V Z)F CVY]?VI[X(E)=-Y)F
CV[X{E)F (51) CV[X(E)] (S5
CVYFV[X(E)=(YV2)F CVI[ZFVI[X(E)=(Y V2]
CV[X(@)] (%) CV[X{E)" (SE)
CV[YzoTV [X(t) = L YF CV[Ysalf V[X(Tn) = oY 1

Fig. 3. Splitting Rules

Definition 15 (Variants). Let C' be a clause, V the set of all free variables in
C' and o a substitution mapping each variable in V' to a new variable, then Co
is a variant of C'.

Definition 16 (Constrained resolution calculus). The constrained resolu-
tion calculus contains the rules given in figures 1, 2 and 3 as well as the rules
of a unification or a unifiability algorithm.

Definition 17 (Search strategies). Given a set of clauses to choose from and
a set of rules to apply, a search strateqy chooses one rule and one or more clauses
such that the rule can be applied to the chosen clauses.

Definition 18 (Derivations). Given a set of initial clauses and a search strat-
eqy, a derivation in the constrained resolution calculus is a sequence of clauses
such that each clause is obtained, using a rule from the calculus, from variants
of clauses occurring earlier in the sequence or from variants of initial clauses
while respecting the search strateqy at each step.

Ezample 4. Fig. 4 shows a derivation of the empty clause from the following
clause set using a standard first-order unification algorithm.

{[Pa]", [Pz]" v [Pfa]",[Pffa]'} (1)
The following lemma will be used later in the paper.

Lemma 1. If a clause set S is refutable using the constrained resolution calcu-
lus, then we can obtain a refutation of S containing a clause C', such that above
it we have only rule applications from figures 1, 2 and 3 and below it we have
only unification rules.

40

Fig. 4. A derivation of the empty clause for clause set 1

Proof. We need to show that no rule among the ones from figures 1, 2 and 3
depends on a substitution generated by the unification rules. For the splitting
rules it is clear as if they are applicable after a substitution is applied they are
also applicable before. For the simplification rules, we might generate a literal
by applying a substitution and then apply simplification rules. But, in this case
we can apply splitting on the same variable and allow unification (later) to
decompose the term. With regard to (Resolve) and (Factor), if they can be
applied before they can always be applied (using splittings if necessary) also
afterwards.

Remark 1. The constrained resolution calculus can be applied in a fully lazy
mode by postponing the application of the unification rules. The above lemma
shows that when applied in this mode, the simplification rules are not required
for completeness.

Theorem 1 ([8]). A finite set of formulas is unsatisfiable with regard to Henkin’s
semantics [7] if and only if it is refutable by the constrained resolution calculus
using a pre-unification procedure for the simply typed lambda calculus.

Remark 2. For the above theorem to be correct, it was shown [2] that infinitely-
many extensionality initial clauses must be added.

41

3 The Hybrid Resolution Calculus

Our main goal in this paper is to describe a resolution calculs which utilizes
unifiability algorithms instead of unification procedures. The motivation for that
is clear: unifiability algorithms terminate on much larger and more interesting
classes of problems than unification procedures. A trivial example is the following
string unification problem [10].

T1bxob. .. b, = xoxsxabraxszab. .. br,x,x,baaa (2)

which has a unique unifier ¢ such that o(z,) = a®". This problem is clearly
not included in any unification class with a terminating algorithm - the depth
of terms we need to search for cannot be smaller than 3™, but the size of the
problem is only 6n — 2. But, on the other hand, a unifiability algorithm for this
problem exists [14].

The hybrid resolution calculus described in this section will use two different
unification approaches in parallel. The first will be to apply the unifiability
algorithms eagerly in order to find a witness for the unifiability of the current
set of constraints. The second will be to keep track of the global search for a
refutation.

This will allow us to backtrack, once the witness we have found does not
suffice, to the same unification problem again but this time compute a witness
based, not on the local IT of the problem, but on the IT of the problem that

ras not unifiable by the original witness. In this way we are assured that our
unifiability algorithms always compute the "correct” witnesses required for a
refutation.

In order to keep track of the search, we will use search graphs.

Definition 19 (Search graphs). Given a clause set S, a search graph for S is
a directed graph, with a one-to-one labeling function 1b1l from nodes to clauses
such that:

— for all clauses in S, there are nodes bearing them as labels.

— if there is an edge from node vy to node vy then the clause 1bl(va) can be ob-
tained from clause 1bl(vy) using one rule from the sets defined in definitions
12, 13 and 14.

A full search graph is a search graph that in addition satisfies:

— if there are nodes v and vy and 1bl(v) is obtained from 1bl(vy) and some
clause ¢ by a binary rule, then there is a node va such that 1bl(v2) = ¢ and
there is an edge from vo to v. We will consider only full search graphs from
now on.

Note that since we might have many ways to deriwe each clause using the allowed
rules, we might also have many edges coming into each node in the search graph.

Ezample 5. Fig. 5 shows a possible search graph for the search from Ex. 4. As
can be seen, the main role of the graphs is to factor out the unification rules.

42

[Pfag]t v [Pa = Pe f v [Pfe, = Paglf

Fig. 5. Some search graph for the refutation in Ex. 4.

We will also define the following function on nodes in search graphs.

Definition 20 (Maximal descendant). Given a node v, its mazimal descen-
dant is the node whose label has the maximal IT-value for the associated unifica-
tion problem of all nodes which are descendants of v.

We can now define the hybrid calculus.

Definition 21 (Dynamic IT). Given a function II, a clause C' and an on-
going search for a refutation denoted by the search graph G and let n be the
node corresponding to C, then the dynamic II, denoted by I, computes for C
the value IT(P') where P' is the unification problem in the clause labeling the
mazimal descendant of n in G.

Definition 22 (Hybrid resolution calculus). The hybrid resolution calculus
is identical to the constrained resolution calculus but utlizes the dynamic g
when applying the unification rules where G is the current search graph.

The correctness of the caleulus will be proved with regard to the constrained
resolution calculus. In order to prove the above theorem, we need some more
technical terms.

Definition 23 (Skeletons). A skeleton of a derivation D in the constrained
resolution calculus together with a unifiability algorithm is a sequence of clauses
skeleton(D) created recursively on D as follows:

— if D is an initial clause then skeleton(D) = D.
— if D is a clause obtained using a rule p applied to previous clauses Dy, .., D,,:
o if pis from figures 12, 13 and 14, then skeleton(D) is obtained from
skeleton(D),.., skeleton(D,,) using p.
e else p must be a unifiability rule and therefore n = 1. In this case we
take skeleton(D) = skeleton(D1).

43

Ezample 6. The skeleton of the refutation in Ex. 4 is identical (when denoted as
an acyclic graph) to the graph in Fig. 5. Note that in general the search graphs
might be very complex and we chose a simple search graph for the matter of
demonstration only.

Lemma 2. For any derivation D of a clause C' which is obtained using the
constrained resolution calculus without any unifiability rules, if the unification
problem associated with C' belongs to the class S of unification problems and is
unifiable, then there is a unifier o of C' such that we can obtain a derivation of
the clause C'o using the hybrid resolution calculus and a unifiability algorithm
for class S.

Proof. Let G be the current search graph, we prove by induction on the structure
of skeleton(D). Let Sk be the last clause in skeleton(D).

— if Sk is an initial clause, we can derive it also using the hybrid calculus.

— if Sk is obtained by a rule application which does not introduce new unifica-
tion constraints then we can apply the same rule using the hybrid calculus.

— otherwise, Sk is obtained by a rule p which introduces unification constraints.
Since we do not apply substitutions in D, these unification constraints occur
also in C'. Let P be the unification problem associated with C'. Since P is
contained in the class S of unification problems, it is also unifiable by some
unifier ¢ which can be obtained by applying the unifiability algorithm on
P using the measure I7(P). Let C1,...,C, be the clauses generating Sk.
Clearly, the unification problems associated with them are subsets of P and
since (' is either the maximal descendant of C4,...,C,, or has the same IT-

value as the maximal descendant, there are substitutions o4,...,0,, which
unify them respectively (using I15) such that there is a substitution # such
that ¢ = oy o... 00, o#f. Therefore, according to the induction hypthesis
(and note that G does not change), there are derivations of Cyoq,...,Choy,

using the hybrid calculus and we can apply p and unification rules of the
unifiability algorithm in order to obtain C'o.

Theorem 2 (Relative-completeness). Given a finite set of formulas S, if S
is refutable using the constraint resolution calculus with a unifiability algorithm
A and function II, then it is refutable using the hybrid resolution calculus with

A and IT.

Proof. Since S is refutable using the constraint resolution calculus, we can apply
Lemma 1 and obtain a derivation of a clause C' containing no unification rule
and which is unifiable by ¢. Since o can be computed by A using I7, we can use
Lemma 2 in order to obtain a derivation of C'e in the hybrid resoluton calculus.
But, since C' contains only unification constraints, C'o is the empty clause and
we have obtained a refutation.

44

4 A Speed-up Result

In order to demonstrate how the hybrid calculus takes advantage of the special
attributes of the unifiability algorithms, we will define in this section a scheme
of clause sets on which the hybrid resolution calculus performs better.

We first need to define a search strategy to be used by both calculi in order to
choose the next clauses and literals to process as well as an evaluation function
which can be applied to each calculus and be used in order to compare their
performances.

Definition 24 (The search strategy). Given a set of clauses to choose from
and a set of rules to apply, the search strateqy chooses clauses and the next rule
to apply as follows:

— choose shortest clauses according to the number of characters.

— choose shallowest literals, where the depth of a literal is the mazimal depth
of a term in it.

— compute first unifiers mapping variables to terms of minimal depth.

— choose a unification transformation first if possible, otherwise, choose a trans-
formation respecting the previous rules.

The first two rules in the above strategy are normally used in the search for
refutations as they increase the probability for a shorter refutation and simpler
unification. The third rule is a consequence of most unification and unifiability
procedures which apply unification rules on one symbol at a time and therefore
compute minimal unifiers first.

Here is the place to discuss why we force both calculi to apply unification
transformations before other transformations. The first reason is, of course, that
if we postpone the application of the unification rules to the end, the hybrid
calculus will perform in an identical way to the constrained resolution calculus.
In fact, this is exactly the meaning of the word hybrid in the calculus name,
namely, to combine the lazy and eager approaches. The reason why we would
like to apply unification eagerly is clear: with the lazy approach we might traverse
paths in the search which cannot be unifiable. Therefore, the search space grows
much faster. In general, the size of the search space is a major bottle neck for
the efficiency of the search [1].

Definition 25 (Evaluation function for derivations). Given a resolution
caleulus R, a unifiability algorithm A , a search strategy S and a clause set
C, the evaluation function ¥ for R, A, S and C is computed as follows: let
D be the refutation obtained using R, A and S on C and let oq,. .., an be all

the substitutions computed in D, then W(R, A, S,C) = XL Xev, d(oi(x)) where
Vi contains all the higher-order variables in the domain of substitution o; for
0 < i < n and d computes the depth of a term. If there is no refutation obtainable

then W(R, A, S,C') is undefined.

The motivation for this measure is that we will need only unification rules
and rules from Def. 13 in order to refute the clause set below and the number

45

of applications of the rules from Def. 13 will be much smaller than the number
of application of unification rules. We ignore the size of the terms mapped to
first-order variables in the measure as their computation requires normally one
step and does not depend on the depth of the terms. With regard to the ap-
plication rules themselves, although we have abstracted over the concrete rules
in this paper, in all the unifiability algorithms mentioned, the size of the terms
mapped to higher-order variables indeed determines the overall complexity of
the algorithms.

Our choice of the clause set will be based on the search strategy defined
above. When a search for a refutation is applied to the chosen clause set, the
unifiers computed using the non-dynamic 1T will not suffice for the resolution of
later clauses and we will have to choose different clauses. The dynamic IT will
allows us to proceed with the search without regard to the clauses chosen and
therefore to have a significant speedup.

Definition 26 (The clause set). Let n > 0,m > 0 and for a given unifiability
algorithm and a function IT let:

—I'(n) =[P (zc)]:;v VP (z0)]TV [Q(z0)]T

— A(i,m) = [Pi(a.ay)|)f forall0<i<n
v41 "

- A(m) =1[Q (ﬁ x)]F where v = bound(II (P (zc) = P, (ﬁ y1)))

where the types of the predicates P; and QQ ist— o for 0 < i <n, z and a are
of type ¢ — ¢ and the rest of the terms are of type v. The clause set =(n,m) is
defined to be:

E(n,m) ={'(n), A(l,m),..., A(n,m), A(m)} (3)

We abbreviate the constrained resolution calculus as CRC, the hybrid resolu-
tion calculus as HRC and the search strategy as STG.

Lemma 3. Given a unifiability algorithm A with a function II, the constrained
resolution calculus is evaluated, when running on =(n,m), to
W(CRC, A, STG, Z(n,m)) = 2"(Xi_, St _yi) + v+ 1.

1=1r

Proof. The only possible resolution step can take place when starting with the

clause I'(n). We resolve it with one of the As in order, after the elimination of
e

all unification constraints, to obtain a unifier mapping z to Au.a..@ u. We keep
resolving the rest of the As until we are left with the A clause only. Clearly the
substitution found so far does not suffice to allow us to add A to the derivation

and we backtrack to the first step in order to compute a unifier mapping =z
m—41

to Aw.@..a uw. We continue in this way until reaching a unifier mapping z to

Au.a..a v which is the largest unifier which can be computed by A (see Def. 10).
Since the size of the term in the A clause is defined to be larger than the depth

46

of v (see Def. 10, 26), we cannot find a substitution that will allow us to resolve
I' and A and must choose another derivation. We note that each derivation
which will start by resolving I" with one of the As will not suffice and will add
to the measure Z.:’:,,LZ;-zli. We note as well that we have 2" possibilities to
choose a subset of the As until the empty subset will be chosen according to our
search strategy and as the last run which completes the refutation chooses the
clause A first and the substitution computed adds v + 1 to the total evaluation,
W(CRC, A, 8TG, =(n,m)) = 2"(L}_, L% i) + v+ L.
Lemma 4. Given a unifiability algorithm and a function II, the hybrid resolu-
tion calculus is evaluated, when running on the clause set,
to W(HRC, A, STG, Z(n.m)) = X1} i,
Proof. We have a similar execution but since we are using a dynamic I7, upon
reaching the clause A and backtracking, we can compute the right substitution.
Therefore, no attempt to choose different clauses is made. The evaluation is
computed by taking into account the backtracking only and is

el " LE 1 b .
W(CRC, A, STG, Z(n,m)) = X1 i,
Corollary 1. There exists a search strateqy and an infinite sequence of clause
sets such that refuting them is exponentially faster when using the hybrid reso-
lution calculus over the constrained resolution calculus.
Proof. Since v does not depend on n and since Z.f’:mﬂj:li < (v—m) (%) <
v3, we get that by using our clause set, starting with n > v, there is an expo-
nential speed-up by using the hybrid calculus.

Remark 3. When comparing the running time of the two calculi, denoted by
our measure ¥, we can also encounter examples where the hybrid caleulus will
perform worse. Such cases will happen when we expand a path in the search
which is not unifiable at some point as the dynamic IT will allow us to try
larger substitutions than the non-dynamic one and therefore to have a decrease
in performance.

5 Conclusion

There are only a few examples where interesting arithmetical problems could be
proved using a fully-automated theorem prover [16]. The main reason for that
is that arithmetical problems are normally better denoted in second-order logic.
Higher-order automated deduction is not so practical due to the added complex-
ity of higher-order unification and the undecidability of the unification problem.
Syntactical restrictions on unifiers, such as restricting the depth of terms, are
commonly used in order to get around this problem. These restrictions perform
well on some examples but poorly on others. The power of more semantical
unification procedures, which are complete with regard to specific unification
problems, did not reach, as far as the author is aware, the automated deduction

47

field. A first step towards their integration is to design a calculus which can
take advantage of their benefits. Such a calculus was introduced in this paper
and we have shown that this calculus can perform exponentially better when
dealing with unifiability algorithms. We intend in the future to investigate the
completeness of the two caleuli with regard to eager applications of unifiability
algorithms as we believe the "locality” property might harm the completeness
of the constrained resolution calculus. This open problem can be phrased in the
following way: is there a unifiability algorithm for an interesting class S and a
refutable (with respect to S) set of clauses such that no refutation of this set
exists when using the constrained resolution calculus with the search strategy
defined in the previous section? From the relative completeness result in Thm.
2, we know this is not the case with the hybrid resolution calculus.

Another extension of the results in this paper is to test this calculus in
practice. The relationship between some unifiability algorithms and arithmetics
hints that such a calculus might indeed be of use in practice. An example for
this relationship is the bounded higher-order case, where the bound corresponds
to set operations.

References

1. Eli Ben-Sasson. Size space tradeoffs for resolution. In Symp. Theor. Comput.,
pages 457-464, 2002.

2. Benzmiiller C. Comparing approaches to resolution based higher-order theorem
proving. Synthese, 133(1-2):203-335, 2002.

3. Alonzo Church. A formulation of the simple theory of types. .J. Symb. Log.,
5(2):56-68, 1940.

4. William M. Farmer. A unification algorithm for second-order monadic terms. Ann.
Pure Appl. Logic, 39(2):131-174, 1988.

5. Adria Gascon, Guillem Godoy, Manfred Schmidt-Schaufl, and Ashish Tiwari. Con-
text unification with one context variable. J. Symb. Comput., 45(2):173-193, 2010.

6. Warren D. Goldfarb. The undecidability of the second-order unification problem.
Theor. Comput. Sci., 13:225-230, 1981.

7. Leon Henkin. Completeness in the theory of types. J. Symb. Log., 15(2):pp. 81-91,
1950.

8. Gérard P. Huet. Constrained Resolution: A Complete Method for Higher Order
Logic. PhD thesis, Case Western Reserve University, 1972.

9. Gérard P. Huet. A unification algorithm for typed lambda-calculus. Theor. Com-
put. Seci., 1(1):27-57, 1975.

10. A. Koscielski and L. Pacholski. Complexity of unification in free groups and free
semi-groups. In Symp. Found. Comput. Sci., pages 824-829 vol.2, Washington,
DC, USA, 1990. IEEE Computer Society.

11. Jordi Levy. Linear second-order unification. volume 1103 of Lect. Not. Comput.
Sei., 1996.

12. Jordi Levy, Manfred Schmidt-Schaufi, and Mateu Villaret. Bounded second-order
unification is np-complete. In RTA, pages 400414, 2006.

13. Tomer Libal. Bounded higher-order unification using regular terms. In EPiC, 2013.
To appear.

48

14.

15.

16.

17.

G S Makanin. The problem of solvability of equations in a free semigroup. Math.
USSR-Sbornik, 32(2):129, 1977.

G. S. Makanin. On the decidability of the theory of free groups (in russian). In
Fund. Comput. Theor., pages 279-284, 1985.

William Meccune. Solution of the robbins problem. J. Auto. Reaso., 19:263-276,
1997.

Dale A Miller. A compact representation of proofs. Studia Logica, 46(4):347-370,
1987.

. Manfred Schmidt-SchauBl. A decision algorithm for distributive unification. Theor.

Comput. Sci., 208:111-148, 1998.

. Manfred Schmidt-Schaufl. A decision algorithm for stratified context unification.

J. Log. Comput., 12(6):929-953, 2002.

. Manfred Schmidt-Schaufi and Klaus U. Schulz. Decidability of bounded higher-

order unification. J. Symb. Comput., 40(2):905-954, August 2005.

. Wayne Snyder and Jean H. Gallier. Higher-order unification revisited: Complete

sets of transformations. J. Symb. Comput., 8(1,/2):101-140, 1989.

. Wayne S. Snyder. Complete sets of transformations for general unification. PhD

thesis, Philadelphia, PA, USA, 1988. AAIR824793.

49

Exact Global Optimization on Demand
(Presentation Only)

Leonardo de Moura

Microsoft Research, Redmond

Grant Olney Passmore

LFCS, Edinburgh and Clare Hall, Cambridge
April 20, 2013

Abstract

We present a method for exact global nonlinear optimization based
on a real algebraic adaptation of the conflict-driven clause learning
(CDCL) approach of modern SAT solving. This method allows poly-
nomial objective functions to be constrained by real algebraic con-
straint systems with arbitrary boolean structure. Moreover, it can
correctly determine when an objective function is unbounded, and
can compute exact infima and suprema when they exist. The method
requires computations over over real closed fields containing infinites-
imals (cf. [1]). Finally, we briefly sketch how this method can be
adapted to linear integer arithmetic, and, more generally, to various
theories of arithmetic possessing computable nonstandard models.

References
[1] Leonardo de Moura and Grant Olney Passmore, Computation over Real

Closed Infinitesimal and Transcendental Extensions of the Rationals, 24th
International Conference on Automated Deduction (CADE-24), 2013.

50

On the conjunctive fragments of theory of linear
arithmetic

Pavlos Eirinakis! *, Salvatore Ruggieri?, K. Subramani® *, and Piotr
Wojciechowski® *

'DMST, Athens University of Economics and Business
peir@aueb.gr
2Dipartimento di Informatica, Universita di Pisa
ruggieri@di.unipi.it
SLDCSEE, West Virginia University
ksmani@csee.wvu.edu,pwojciec@mix.wvu.edu

Abstract. A discussion of recent developments on the conjunctive frag-
ments of theory of linear arithmetic.

1 Introduction

In this paper, we present recent developments on the conjunctive fragments of
theory of linear arithmetic. Quantified linear programming [1, 2] is the problem of
checking whether a linear system is satisfiable with respect to a given quantifier
string. Hence, it represents a generalization of linear programming. Hence, Quan-
tified Linear Program (QLP) is a set of linear inequalities, where all variables
are either existentially or universally quantified. By extending the quantification
of variables to implications of two linear systems, we explore Quantified Linear
Implications (QLIs) [3-5]. QLIs correspond to inclusion queries of polyhedral
solution sets of two linear systems with respect to a given quantifier string.
QLPs represent a rich language that is ideal for expressing schedulability
specifications in real-time scheduling [6-9]. In real-time scheduling, however, it
may be the case that the dispatcher has already obtained a schedule (solution)
but then some constraints are slightly altered. QLIs can be then utilized to
decide whether the dispatcher needs to recompute a solution or can still use
the current one. Moreover, QLIs can be used to model reactive systems [10, 11],
where the universally quantified variables represent the environmental input,
while the existentially quantified variables represent the system’s response.

2 Quantified Linear Programming

A QLP is a linear system whose variables are either existentially or universally
(with bounds) quantified according to a given quantifier string:

Ix; Vy1 € I, w] ... 3%, Yy, € [ln,un] A-x+N-y<b (1)

* This research was supported in part by the National Science Foundation through
Award CCF-0827397 and Award CNS-0849735.

51

(1,3,BB)
(NP-complete)

1,3,BL) (1,3,LB) (1,3,BR) (1,3,RB)
(P) (NP-complete) (P) (P)

(1,3,LL) (1,3,LR) (1,3,RL) (1,3,RR)
(P) (P) (P) (P)

Fig. 1. Complexity of 3V classes of QLIs. Arrows denote inclusions.

where X ... X, is a partition of x with, possibly, x; empty; y1 ...y, is a partition
of y with, possibly, y,, empty; and 1;, u; are lower and upper bounds in & for
Yy, 1= 1,...,n.

The Fourier-Motzkin existential quantifier elimination method and a univer-
sal quantifier elimination method have been employed to provide a method for
deciding QLPs [2].

Theorem 1. Deciding a QLP of the form (1) is in PSPACE.

The special case of E-QLP problems, which are of the form Jy Vx € [1,u] Ax+
N .y < b, are solvable in polynomial time [2, Theorem 8.1]. Another special
case is F-QLP problems, which are of the form Vy € [LLu] 3x A-x+N-y <b.
Deciding an F-QLP is coNP-complete [2, Theorem 8.2].

3 Quantified Linear Implication

QLIs extend the notion of inclusion of linear systems to arbitrary quantifiers:
Ix; Vy;3x, Vy, [A-x+N - y<b—->C-x+M. y<d] (2)

where x; ...x, and yj ...y, are partitions of x and y respectively, and where
x; and/or y, may be empty. The following result can be obtained through a
reduction from the generic Q3SAT problem.

Theorem 2. Deciding a QLI of the form (2) is PSPACE-hard.

Let Q(x,y) denote the quantifier string, namely 3x; Yy ...3x, Yy, in the
QLI (2). A nomenclature is introduced in [3] to represent the classes of QLIs.
Consider a triple (A, @, R). Let A denote the number of quantifier alternations in
Q(x,y) and @ the first quantifier of Q(x,y). Also, let R be an (A + 1)-character
string, specifying for each quantified set of variables in Q(x,y) whether they
appear on the Left, on the Right, or on Both sides of the implication.

52

In [12], problem (0,V, B) is shown in P by reducing the problem to a finite
number of linear programs, which are in P by [13]. Various classes of 1- and
2-quantifier alternation QLIs are examined in [3-5]. Indicatively, we present the
class of 1-quantifier alternation QLIs starting with 3 in Figure 1. The case of
1-quantifier alternation QLIs starting with V is shown to be symmetric (see [5,
Figure 4]).

Finally, let us examine the case of k alternations of quantifiers. In [5], problem
(k,3,B¥1) with k odd is shown to be XF -hard, while problem (k, V, B*+1) with
k even is shown to be Hf-hard, where B*t! denotes the string B...B.

k+1

References

1. K. Subramani, “An analysis of quantified linear programs,” in Proceedings of the
4" International Conference on Discrete Mathematics and Theoretical Computer
Science (DMTCS), ser. Lecture Notes in Computer Science, C.S. Calude, et. al.,
Ed., vol. 2731. Springer-Verlag, July 2003, pp. 265-277.

, “On a decision procedure for quantified linear programs,” Annals of Mathe-
matics and Artificial Intelligence, vol. 51, no. 1, pp. 55-77, 2007.

3. P. Eirinakis, S. Ruggieri, K. Subramani, and P. Wojciechowski, “Computational
complexities of inclusion queries over polyhedral sets,” in International Symposium
on Artificial Intelligence and Mathematics, Fort Lauderdale, FL, 2012.

4. —— “A complexity perspective on entailment of paramererized linear con-
straints,” Constraints, vol. 17, no. 4, pp. 461-487, 2012.
5. ——, “On quantified linear implications,” Annals of Mathematics and Artificial

Intelligence - DOI: 10.1007/s10472-013-9332-3, 2013. [Online]. Available:
http://link.springer.com/article/10.1007%2Fs10472-013-9332-3

6. R. Gerber, W. Pugh, and M. Saksena, “Parametric dispatching of hard real-time
tasks,” IEEE Transactions on Computing, vol. 44, no. 3, pp. 471-479, 1995.

7. S. Choi and A. Agrawala, “Dynamic dispatching of cyclic real-time tasks with
relative timing constraints,” Real-Time Systems, vol. 19, no. 1, pp. 5-40, 2000.

8. K. Subramani, “An analysis of partially clairvoyant scheduling,” Journal of Math-
ematical Modelling and Algorithms, vol. 2, no. 2, pp. 97-119, 2003.

9. ——, “An analysis of totally clairvoyant scheduling,” Journal of Scheduling, vol. 8,
no. 2, pp. 113-133, 2005.

10. T. Koo, B. Sinopoli, A. Sangiovanni-Vincentelli, and S. Sastry, “A formal approach
to reactive system design: unmanned aerial vehicle flight management system de-
sign example,” in Proceedings of the 1999 IEEE International Symposium on Com-
puter Aided Control System Design, 1999, pp. 522 — 527.

11. R. Hall, “Specification, validation, and synthesis of email agent controllers: A case
study in function rich reactive system design,” Automated Software Engineering,
vol. 9, no. 3, pp. 233-261, 2002.

12. K. Subramani, “On the complexity of selected satisfiability and equivalence queries
over boolean formulas and inclusion queries over hulls,” Journal of Applied Math-
ematics and Decision Sciences (JAMDS), vol. 2009, pp. 1-18, 20009.

13. L. G. Khachiyan, “A polynomial algorithm in linear programming,” Doklady
Akademiia Nauk SSSR, vol. 224, pp. 1093-1096, 1979, english Translation: Soviet
Mathematics Doklady, Volume 20, pp. 1093-1096.

53

54

Author Index

Pavlos Eirinakis 51
Vijay Ganesh 1
Alain Giorgetticooounit 30
Robert Givan 15
Tanji Hu ...l 15
Olga Kouchnarenko 30
Tomer Libal 35
Mia Minnes oL, 1
Leonardo de Moura, 50
Armando Solar-Lezama 1
Grant Passmore 50
Martin Rinard 1
Christophe Ringeissen 30
Salvatore Ruggieri 51
K. Subramani 51
Elena Tushkanova 30

Piotr Wojciechowski 51

