
IJCAR'14

7th International Joint Conference on
Automated Reasoning

 Workshop

Automated Deduction: Decidability,
Complexity, Tractability (ADDCT)

18 July 2014

 Silvio Ghilardi, Ulrike Sattler,
 Viorica Sofronie-Stokkermans

In the summer of 2014, Vienna hosted the largest scientific conference in the history of logic.

The Vienna Summer of Logic (VSL, http://vsl2014.at) consisted of twelve large conferences

and 82 workshops, attracting more than 2000 researchers from all over the world. This unique

event was organized by the Kurt Gödel Society at Vienna University of Technology from July

9 to 24, 2014, under the auspices of the Federal President of the Republic of Austria, Dr. Heinz

Fischer.

The conferences and workshops dealt with the main theme, logic, from three important angles:

logic in computer science, mathematical logic, and logic in artificial intelligence. They naturally

gave rise to respective streams gathering the following meetings:

Logic in Computer Science / Federated Logic Conference (FLoC)

• 26th International Conference on Computer Aided Verification (CAV)

• 27th IEEE Computer Security Foundations Symposium (CSF)

• 30th International Conference on Logic Programming (ICLP)

• 7th International Joint Conference on Automated Reasoning (IJCAR)

• 5th Conference on Interactive Theorem Proving (ITP)

• Joint meeting of the 23rd EACSL Annual Conference on Computer Science Logic (CSL)

and the 29th ACM/IEEE Symposium on Logic in Computer Science (LICS)

• 25th International Conference on Rewriting Techniques and Applications (RTA) joint

with the 12th International Conference on Typed Lambda Calculi and Applications (TLCA)

• 17th International Conference on Theory and Applications of Satisfiability Testing (SAT)

• 76 FLoC Workshops

• FLoC Olympic Games (System Competitions)

Mathematical Logic

• Logic Colloquium 2014 (LC)

• Logic, Algebra and Truth Degrees 2014 (LATD)

• Compositional Meaning in Logic (GeTFun 2.0)

• The Infinity Workshop (INFINITY)

• Workshop on Logic and Games (LG)

• Kurt Gödel Fellowship Competition

Logic in Artificial Intelligence

• 14th International Conference on Principles of Knowledge Representation and Reasoning

(KR)

• 27th International Workshop on Description Logics (DL)

• 15th International Workshop on Non-Monotonic Reasoning (NMR)

• 6th International Workshop on Knowledge Representation for Health Care 2014 (KR4HC)

The VSL keynote talks which were directed to all participants were given by Franz Baader

(Technische Universität Dresden), Edmund Clarke (Carnegie Mellon University), Christos Pa-

padimitriou (University of California, Berkeley) and Alex Wilkie (University of Manchester);

Dana Scott (Carnegie Mellon University) spoke in the opening session. Since the Vienna Sum-

mer of Logic contained more than a hundred invited talks, it is infeasible to list them here.

The program of the Vienna Summer of Logic was very rich, including not only scientific talks,

poster sessions and panels, but also two distinctive events. One was the award ceremony of the

Kurt Gödel Research Prize Fellowship Competition, in which the Kurt Gödel Society awarded

three research fellowship prizes endowed with 100.000 Euro each to the winners. This was the

third edition of the competition, themed Logical Mind: Connecting Foundations and Technology

this year.

The other distinctive event were the 1st FLoC Olympic Games hosted by the Federated Logic

Conference (FLoC) 2014. Intended as a new FLoC element, the Games brought together 12

established logic solver competitions by different research communities. In addition to the

competitions, the Olympic Games facilitated the exchange of expertise between communities,

and increased the visibility and impact of state-of-the-art solver technology. The winners in

the competition categories were honored with Kurt Gödel medals at the FLoC Olympic Games

award ceremonies.

Organizing an event like the Vienna Summer of Logic has been a challenge. We are indebted to

numerous people whose enormous efforts were essential in making this vision become reality.

With so many colleagues and friends working with us, we are unable to list them individually

here. Nevertheless, as representatives of the three streams of VSL, we would like to particularly

express our gratitude to all people who have helped to make this event a success: the sponsors

and the honorary committee; the organization committee and the local organizers; the confer-

ence and workshop chairs and program committee members; the reviewers and authors; and of

course all speakers and participants of the many conferences, workshops and competitions.

The Vienna Summer of Logic continues a great legacy of scientific thought that started in An-

cient Greece and flourished in the city of Gödel, Wittgenstein and the Vienna Circle. The heroes

of our intellectual past shaped the scientific world-view and changed our understanding of sci-

ence. Owing to their achievements, logic has permeated a wide range of disciplines, including

computer science, mathematics, artificial intelligence, philosophy, linguistics, and many more.

Logic is everywhere – or in the language of Aristotle, πάντα πλήρη λογικῆς τέχνης.

Vienna, July 2014

Matthias Baaz, Thomas Eiter, Helmut Veith

Preface

This volume contains the papers presented at the workshop ADDCT 2014: Au-
tomated Deduction: Decidability, Complexity, Tractability, held in Vienna on
July 18, 2014, affiliated with IJCAR 2014 and RTA 2014. ADDCT 2014 is the
fourth of the ADDCT workshops: the previous workshops were ADDCT 2007
(held in Bremen, together with CADE 21), ADDCT 2009 (held in Montreal to-
gether with CADE 22) and ADDCT 2013 (held in Lake Placid together with
CADE 24).

The goal of ADDCT is to bring together researchers interested in

– Decidability, in particular decision procedures based on logical calculi such
as: resolution, rewriting, tableaux, sequent calculi, or natural deduction, but
also decidability in combinations of logical theories;

– Complexity, especially complexity analysis for fragments of first- (or higher)
order logic and complexity analysis for combinations of logical theories (in-
cluding parameterized complexity results);

– Tractability (in logic, automated reasoning, algebra, ...);
– Application domains for which complexity issues are essential (verification,

security, databases, ontologies, ...).

With the development of computer science these problems are becoming ex-
tremely important. Although general logical formalisms (such as predicate logic
or number theory) are undecidable, decidable theories or decidable fragments
thereof (sometimes even with low complexity) often occur in mathematics, in
program verification, in the verification of reactive, real time or hybrid sys-
tems, as well as in databases and ontologies. It is therefore important to identify
such decidable fragments and design efficient decision procedures for them. It
is equally important to have uniform methods (such as resolution, rewriting,
tableaux, sequent calculi, ...) which can be tuned to provide algorithms with
optimal complexity.

The programme of ADDCT 2014 includes one invited talk, by Nicolas Peltier,
entitled “A Superposition-Based Approach to Abductive Reasoning in Equa-
tional Clausal Logic” and 5 contributed papers. We allowed the possibility of
submitting to ADDCT not only original papers, but also presentation-only pa-
pers, describing work presented in papers which are already published. We thank
the programme committee and the additional reviewers for their careful referee
reports.

July 2014

Silvio Ghilardi Viorica Sofronie-Stokkermans

Università degli Studi di Milano University Koblenz-Landau and

Max-Planck-Institut für Informatik, Saarbrücken

Ulrike Sattler

University of Manchester

The workshop organizers greatly benefited from using the EasyChair system.

ADDCT 2014 Program Committee

Program Committee

Carlos Areces FaMAF - Universidad Nacional de Córdoba
Franz Baader TU Dresden
Peter Baumgartner NICTA
Maria Paola Bonacina Università degli Studi di Verona
Christian Fermüller TU Wien
Silvio Ghilardi Università degli Studi di Milano
Rajeev Gore The Australian National University
Matthias Horbach MPII Saarbrücken and University Koblenz-Landau
Ullrich Hustadt The University of Liverpool
Felix Klaedtke NEC Europe Ltd.
Carsten Lutz Universität Bremen
Christopher Lynch Clarkson University
Silvio Ranise FBK-Irst
Ulrike Sattler The University of Manchester
Renate A. Schmidt The University of Manchester
Viorica Sofronie-Stokkermans University Koblenz-Landau and MPII Saarbrücken
Ashish Tiwari SRI International
Luca Viganò King’s College London

1

ADDCT 2014 Table of Contents

Table of Contents

A Superposition-Based Approach to Abductive Reasoning in Equational Clausal Logic. . . . 1

Mnacho Echenim, Nicolas Peltier and Sophie Tourret

Satisfiability Modulo Non-Disjoint Combinations of Theories Connected via Bridging
Functions . 19

Paula Chocron, Pascal Fontaine and Christophe Ringeissen

Finding Minimum Type Error Sources. 27

Zvonimir Pavlinovic, Tim King and Thomas Wies

Decidability of Iteration-free PDL with Parallel Composition . 31

Joseph Boudou and Philippe Balbiani

Axiomatic and Tableau-Based Reasoning for Kt(H,R) . 46

Renate A. Schmidt, John Stell and David Rydeheard

On Dual Tableau-Based Decision Procedures for Relational Fragments. 50

Domenico Cantone, Joanna Golinska-Pilarek and Marianna Nicolosi-Asmundo

1

A Superposition-Based Approach to Abductive

Reasoning in Equational Clausal Logic

M. Echenim, N. Peltier, and S. Tourret

Univ. Grenoble Alpes, F-38000 Grenoble, France
CNRS, LIG

Abstract. Abduction can be de�ned as the process of inferring plausi-
ble explanations (or hypotheses) from observed facts (conclusions). This
form of reasoning has the potential of playing a central role in system
veri�cation, particularly for identifying bugs and providing hints to cor-
rect them. We describe an approach to perform abductive reasoning that
is based on the superposition calculus. The formulas we consider are sets
of �rst-order clauses with equality, and the explanations that are allowed
to be inferred are boolean combinations of equations constructed over a
given �nite set of ground terms. By duality, abduction can be reduced
to a consequence-�nding problem. We show how the inference rules of
the superposition calculus can be adapted to obtain a calculus that is
deductive complete for ground clauses built on the considered sets of
ground terms, thus guaranteeing that all required explanations can be
generated. This calculus enjoys the same termination properties as the
superposition calculus: in particular, it is terminating on ground exten-
sions of decidable theories of interest in software veri�cation.

The number of implicates of a given equational formula is usually huge.
We describe techniques for storing sets of abduced clauses e�ciently, and
show how usual trie-based approaches for representing sets of proposi-
tional clauses in a compact way can be adapted and extended in order
to denote equational clauses up to equivalence (modulo the axioms of
equality). We provide algorithms for performing redundancy pruning in
an e�cient way on such representations. We also identify hints for im-
provements and provide lines of on-going and future research.

1 Introduction

The veri�cation of complex systems is often based on proving the validity, or,
dually, the satis�ability of a logical formula. The behavior of the system to be
veri�ed and its intended properties are both translated into logical formulas φ
and ψ respectively, and the veri�cation task boils down to proving that φ ⇒ ψ
holds, i.e., that the formula φ ∧ ¬ψ is unsatis�able. If the formula turns up to
be satis�able, then any model of φ∧¬ψ can be viewed as a trace that generates
an error. Such models help system designers locate the origin of the errors and
provide hints to correct them, and most state-of-the-art SMT solvers (see for
instance http://www.smtlib.org/) feature automated model building tools (see

sofronie
Typewritten Text

sofronie
Typewritten Text
1

[7] for more details about general-purpose model building procedures in �rst-
order logic). However, this approach is not always satisfactory. First, there is
the risk of an information overkill: indeed, the generated model may be very
large and complex, and discovering the origin of the error may require a long
and di�cult analysis. Second, the model may be too speci�c, in the sense that it
only corresponds to one particular execution of the system and that dismissing
this single execution may not be su�cient to �x the system. There are generally
many interpretations on di�erent domains that satisfy the formula. In order
to understand where the error(s) may come from, it is generally necessary to
analyze many of these models and to identify common patterns. This leaves the
user with the burden of having to infer the general property that can rule out
all the undesired behaviors.

We present what is, to the best of our knowledge, a novel approach to this de-
bugging problem. Rather than studying one or several models of a formula, more
valuable information can be extracted from the properties that hold in all the
models of the formula. Our goal is thus to directly infer the missing axioms, or
hypotheses, that can be added in order to ensure the unsatis�ability of the input
formula. These axioms can be viewed as su�cient conditions ensuring that the
system is valid. Such conditions must be plausible and economical: for instance,
explanations that contradict the axioms of the considered theories are obviously
irrelevant. We distinguish a speci�c set of ground terms on which additional
hypotheses are allowed to be made. These terms may be represented by a par-
ticular set of constant symbols, called abducible constants or simply abducibles.
The problem boils down to determining what ground clauses containing only
abducible constants are logically entailed by the formula under consideration.
The negation of any of these clauses can then be viewed as a set of additional
hypotheses that make the formula unsatis�able. Indeed, by duality, computing
implicants (or explanations) of a formula φ is equivalent to computing implicates
(i.e., logical consequences) of ¬φ.

The generation of implicants (or, by duality, of implicates) of logical formu-
las has many applications in system veri�cation and arti�cial intelligence, and
this problem has been thoroughly investigated in the context of propositional
logic. The earlier approaches use re�nements of the resolution method [32, 20,
9, 31], while more recent and more e�cient proposals use decomposition-based
procedures [19, 8, 18, 25, 26]. These methods mainly focus on the e�cient repre-
sentation of information, and develop compact ways of storing and manipulating
huge sets of implicates. In contrast, the approaches handling abductive reasoning
in �rst-order or equational logic are very scarce [24, 21, 27, 11, 29]. When dealing
with equational clause sets, the addition of equality axioms leads to ine�ciency
and divergence in almost all but trivial cases (note that the transitivity axiom
alone already admits in�nitely many implicates!).

In order to compute equational implicates in an e�cient way, we devise a
variant of the superposition calculus [4, 30] that is deductive-complete for the
considered set of abducible constants, i.e., that can generate all the clauses built
on abducible constants that are logical consequences of the input clause set, up

sofronie
Typewritten Text
2

to redundancy. Our procedure is de�ned by enriching the standard calculus with
some new mechanisms allowing the assertion of relevant hypotheses during the
proof search. These additional hypotheses are stored as constraints associated
with the clauses and are propagated along the derivations. If the empty clause
can be generated under a conjunction of hypotheses X , then the conjunction of
the original formula and X is unsatis�able. An essential feature of this approach
is that the conditions are not asserted arbitrarily or eagerly, using a generate-
and-test approach (which would be ine�cient): instead they are discovered on a
need basis.

Due to a lack of space, proofs are omitted. Some of the proofs can be found
in [12, 16, 14].

2 Preliminaries

The set of terms T is built as usual on a set of function symbols F and a set
of variables V. Every symbol f ∈ F is mapped to a unique arity ar(f) ∈ N. An
element of F of arity 0 is a constant. An atom (or equation) is an unordered
pair of terms, written t ' s, where t and s are terms. A literal is either an atom
or the negation of an atom (i.e., a disequation), written t 6' s. For every literal
l, we denote by lc the complementary literal to l, which is de�ned as follows:

(t ' s)c
def

= t 6' s and (t 6' s)c
def

= t ' s. As usual, a non-equational atom p(t) is
encoded as an equation p(t) ' true (where true is a special constant symbol).
For readability, such an equation is sometimes written p(t), and p(t) 6' true is
written ¬p(t). A clause is a �nite multiset of literals, sometimes written as a
disjunction. The empty clause is denoted by 2. For every clause C = {l1, . . . , ln},
Cc denotes the set of unit clauses {{lci} | i ∈ [1, n]} and for every set of unit
clauses S = {{li} | i ∈ [1, n]}, Sc denotes the clause {lc1, . . . , lcn}.

Let Fi ⊆ F be a set of interpreted function symbols, and let A be a set of
constants, called the abducible constants. The set Fi contains symbols whose
interpretation is �xed according to the considered theory (e.g. Fi may contain
symbols 0, 1,+ . . . interpreted as natural numbers and operations on them),
whereas the symbols in F \ Fi are interpreted arbitrarily. The set A is �xed
by the user and contains all constants on which the abducible formulas can be
constructed. Such constants are used as names for ground terms, and equations
of the form c ' t can be added to encode the fact that an abducible constant c
denotes the ground term t.

The set of variables occurring in an expression (term, atom, literal, clause) E
is denoted by var(E). If var(E) = ∅ then E is ground. Let Va,Vi ⊆ V be special
sets of variables which are allowed to be instantiated only by constants in A and
by terms built on Fi, respectively. A substitution σ is a function mapping every
variable to a term, such that if x ∈ Va then σ(x) ∈ A ∪ Va and if x ∈ Vi then
σ(x) is a term built on Fi∪Vi. For every term t and for every substitution σ, we
denote by tσ the term obtained from t by replacing every variable x by its image
w.r.t. σ. The domain of a substitution is the set of variables x such that xσ 6= x.
A substitution σ is ground if for every x in the domain of σ, xσ is ground.

sofronie
Typewritten Text
3

Throughout the paper, we assume that ≺ denotes some �xed reduction or-
dering on terms such that true ≺ t, for all terms t 6= true. The ordering ≺
is extended to atoms, literals and clauses as usual (see, e.g., [4]). We assume
that f(t) � a, for all a ∈ A and all functions and constants f 6∈ A ∪ Fi, and,
similarly, that f(s) � t, for all terms t built on Fi and Vi and for all functions
and constants f 6∈ Fi. This entails that we can also assume that f(s) � x, for
every x ∈ Va and f 6∈ A ∪ Fi or x ∈ Vi and f 6∈ Fi.

A position is a �nite sequence of natural numbers. A position p occurs in
a term t if either p = ε or if t = f(t1, . . . , tn), p = i.q with i ∈ [1, n] and q
is a position in ti. If p is a position in t, the terms t|p and t[s]p are de�ned

as follows: t|ε
def

= t, t[s]ε
def

= s, f(t1, . . . , tn)|i.q
def

= (ti)|q and f(t1, . . . , tn)[s]i.q
def

=
f(t1, . . . , ti−1, ti[s]q, ti+1, . . . , tn).

Given a set of constants E, a literal t ./ s (with ./∈ {', 6'}) is E-�at if
t, s ∈ V ∪ E. A clause is E-�at if all its literals are E-�at. The set of E-�at
clauses is denoted by C�at(E). An expression is �at if it is E-�at for some set of
constants E.

An interpretation is a congruence relation on ground terms, where the inter-
pretation of the symbols in Fi is �xed according to the considered theory (for
instance 0 + 1 ' 1 is to be interpreted as true if 0, 1 and + denote the usual
interpreted symbols on natural numbers, and n ' 1 + · · ·+ 1︸ ︷︷ ︸

k times

is to be interpreted

as true for some k ∈ N if n is intended to denote a non-�xed natural number).
An interpretation I validates a clause C if for all ground substitutions σ of do-
main var(C) there exists l ∈ C such that either l = (t ' s) and (l, s)σ ∈ I, or
l = (t 6' s) and (l, s)σ 6∈ I.

Note that Fi possibly contains interpreted functions whose value is not com-
pletely speci�ed (for instance constants denoting arbitrary natural numbers), in
which case the unsatis�ability problem becomes non-semi-decidable. The inter-
pretation of the symbols in F\Fi is fully arbitrary (as in �rst-order logic). In the
following, completeness results will be given only for the special case in which
Fi = ∅.

3 A Constrained Superposition Calculus

In this section we de�ne an extension of the standard superposition calculus [4,
30] with which it is possible to generate all A-�at implicates of a considered
clause set. The results in this section are extensions of [13] (see Section 3.2 for
a more detailed comparison). The calculus handles constrained clauses, or c-
clauses, the constraint part of a c-clause being a set containing all the equations
and disequations needed to derive the corresponding non-constraint part from
the original clause set. The calculus uses the usual rules of the superposition
calculus [4]; furthermore, an additional inference rule, called the A-Assertion
rule, is introduced in order to add disequations to the constraints.

De�nition 1. A c-clause is a pair [C | X] where C is a clause containing no
symbol in A ∪ Fi and X is a set of literals of the form u ./ v where both u and

sofronie
Typewritten Text
4

v are terms built on A∪Fi and Va ∪Vi. If X = ∅, then we may write C instead
of [C |∅].

A clause containing symbols in A∪Fi can be transformed into an equivalent
c-clause by abstracting away such symbols and replacing them by variables in
Va or Vi. For instance, the clause p(a, 1) where a ∈ A and 1 ∈ Fi is written
[p(x, y) |{x ' a, y ' 1}], with x ∈ Va, y ∈ Vi.

Let sel be a selection function, mapping every clause C to a set of literals
in C such that sel(C) either contains a negative literal or contains all literals
that are �-maximal in C. We assume that sel is stable under substitutions, i.e.,
that for every clause C, for every literal l ∈ C and for every substitution η, if
lη ∈ sel(Cη), then l ∈ sel(C).

3.1 Inference Rules

The calculus SA≺sel is de�ned by the rules below. The standard superposition
calculus (denoted by SP≺sel) coincides with SA

≺
sel if A = Fi = ∅.

A-Superposition

[C ∨ t ./ s |X], [D ∨ u ' v |Y]
[C ∨D ∨ t[v]p ./ s |X ∪ Y]σ

If ./∈ {', 6'}, σ is a most general uni�er of u and t|p, vσ 6�
uσ, sσ 6� tσ, (t ./ s)σ ∈ sel((C ∨ t ./ s)σ), (u ' v)σ ∈ sel((D ∨
u ' v)σ) and if t|p is a variable then t|p ∈ var(X) ∩ Va.

The main di�erence with the usual superposition rule is that superposition
into a variable is permitted, provided the considered variable occurs in the con-
straint part of the clause. The reason is that these symbols do not actually
represent variables in the usual sense, but rather placeholders for (unknown)
constants.

A-Re�ection

[C ∨ t 6' s |X]
[C |X]σ

If σ is a most general uni�er of t and s and (t 6' s)σ ∈ sel((C∨t 6'
s)σ).

Equational A-Factorization

[C ∨ t ' s ∨ u ' v |X]
[C ∨ s 6' v ∨ t ' s |X]σ

If σ is a most general uni�er of t and u, sσ 6� tσ, vσ 6� uσ and
(t ' s)σ ∈ sel((C ∨ t ' s ∨ u ' v)σ).

sofronie
Typewritten Text

sofronie
Typewritten Text

sofronie
Typewritten Text
5

A-Assertion

[x ' y ∨ C |X]
[C |X ∪ {x 6' y}]

If x, y ∈ Va ∪ Vi, x ' y ∈ sel(x ' y ∨ C) and A ∪ Fi 6= ∅.

If Fi = ∅, then the calculus is essentially equivalent to the one de�ned in the
research report [14] although the presentation is slightly di�erent (the calculus
in [14] does not abstract away the constant symbols in A, instead it performs
uni�cation modulo equations between such constants � in other words the re-
placement of constants in A by variables is directly handled by the uni�cation
algorithm).

Redundancy We now adapt the standard redundancy criterion to c-clauses.

De�nition 2. A c-clause [C | X] is A-redundant in a set of c-clauses S if for
every ground substitution θ of the variables in [C |X] such that X θ is satis�able,
there exist c-clauses [Di |Yi] and substitutions σi (1 ≤ i ≤ n), such that:

� Yiσi |= X θ for all i = 1, . . . , n;
� D1σ1, . . . , Dnσn |= Cθ;
� D1σ1, . . . , Dnσn � Cθ.

De�nition 3. A set S is SA≺sel-saturated if every c-clause that can be derived
from c-clauses in S by a rule in SA≺sel is redundant in S.

3.2 Soundness and Deductive Completeness

The interpretation of a c-clause is de�ned from its set of ground instances, view-
ing constraints as logical implications:

De�nition 4. An interpretation I validates a c-clause [C | X] i� for every
ground substitution σ of domain var(C) ∪ var(X), either I 6|= Xσ or I |= Cσ.

The following theorem states the soundness of SA≺sel.

Theorem 1. Let S be a set of c-clauses. If C is deducible from S by one of the
rules of SA≺sel then S |= C.

In the remainder of this section, we assume that Fi is empty, i.e., that the
considered clause set contains no interpreted symbol. Note that the logic is not
semi-decidable in general in the presence of interpreted symbols, thus no proce-
dure can be refutationally complete if Fi 6= ∅.

De�nition 5. Let S be a set of c-clauses. A clause C is an A-implicate of S if
it satis�es the following conditions.

� C is A-�at and ground.
� C is not a tautology.

sofronie
Typewritten Text
6

� S |= C.

The clause C is a prime A-implicate of S if, moreover, C |= D holds for every
A-implicate D of S such that D |= C. We denote by IA(S) the set of A-implicates
of S.

De�nition 6. We denote by CA(S) the set of clauses of the form (Xσ)c, where
[2 | X] ∈ S and Xσ is satis�able. We write S v S′ if for every clause C ′ ∈ S′,
there exists C ∈ S such that C |= C ′.

The main result we have is that CA(S) v IA(S) holds for all saturated sets
S. However, in practice it is important not only to be able to generate the sets
of all prime A-implicates but also to be able to generate only some speci�c A-
implicates, satisfying some additional property (e.g., to generate unit or positive
implicates, etc.). To compute such sets of implicates e�ciently, it is essential to
block inferences generating candidates not satisfying the desired property. We
thus introduce the following de�nition.

De�nition 7. A set of clauses P is closed under subsumption if for every C ∈
P and for every clause D such that D subsumes C, we have D ∈ P. A c-clause
[C |X] is P-compatible if X c ∈ P. SA≺sel(P) denotes the calculus SA≺sel in which
all inferences that generate non-P-compatible c-clause are blocked.

Examples of classes of clauses that are closed under subsumption include the
following sets that are of some practical interest:

� The set of clauses C such that there exists a substitution σ such that Cσ is
equivalent to a clause of length at most k.

� The set of positive (resp. negative) clauses.
� The set of implicants of some formula φ.

Note also that the class of clause sets that are closed under subsumption is closed
under union and intersection, which entails that these criteria can be combined
easily.

Theorem 2. Let Sinit be a set of standard clauses and let S be a set of c-clauses
obtained from Sinit by SA≺sel(P)-saturation. If P is closed under subsumption
then CA(S) v IA(S) ∩P.

In particular, if P is the set of all clauses constructed over A, then SA≺sel-
saturation permits to obtain the set of all prime A-implicates of a given set of
clauses

A concise representation of A-implicates. It is interesting to investigate
what happens if one prevents inferences on A-literals. The obtained calculus then
essentially simulates the one introduced in [13]. It is not complete since it does
not generate all A-implicates in general, but it is complete in a restricted sense:
every A-implicate is a logical consequence of the set of A-�at clauses generated
by the calculus (note that [13] established this result only in the particular case of

sofronie
Typewritten Text
7

sofronie
Typewritten Text

sofronie
Typewritten Text

sofronie
Typewritten Text

variable-inactive clauses [2]). More precisely, we denote by SAR≺sel the calculus
SA≺sel in which no inference upon A-literals is allowed, except for the A-assertion
and A-re�ection rules.

Theorem 3. For all SAR≺sel-saturated sets of c-clauses S, we have CA(S) |=
IA(S).

The di�erence between the calculi SA≺sel and SAR
≺
sel can be summarized as

follows.

� The calculus SA≺sel explicitly generates all prime implicates in IA(S),
whereas SAR≺sel only generates a �nite representation of these implicates,
in the form of an A-�at implicant S′ of IA(S). The formula S′ can still
contain redundancies and some additional post-processing step is required
to generate explicitly the prime implicates of S′ if needed. Any algorithm
for generating prime implicates of propositional clause sets can be used for
this purpose, since �at ground equational clause sets can be reduced into
equivalent sets of propositional clauses by adding equality axioms. From a
practical point of view, the set IA(S) can be very large, thus S′ can also be
viewed as a concise and suitable representation of this set.

� The calculus SAR≺sel restricts inferences on A-�at literals to those that actu-
ally delete such literals, possibly by transferring them to the constraint part
of the clauses (the A-Assertion and A-Re�ection rules). From a practical
point of view, this entails that these literals do not need to be considered
anymore in the clausal part of the c-clause: they can be transferred system-
atically in the constraints. This can reduce the number of generated clauses
by an exponential factor, since a given A-�at clause l1 ∨ . . . ∨ ln can be
in principle represented by 2n distinct c-clauses depending on whether li is
stored to the clausal or constraint part of the c-clause (for instance a ' b
can be represented as [a ' b | ∅] or [2 |a 6' b]). Furthermore, the number of
applicable inferences is also drastically reduced, since the rules usually apply
in many di�erent ways on (selected) A-literals.

It is possible to combine the two calculi SA≺sel and SAR
≺
sel. This can be done as

follows.

� Starting from a set of clauses S, SAR≺sel is applied �rst until saturation,
yielding a new set S′. By Theorem 3 we have CA(S′) ≡ IA(S).

� Then SA≺sel(P) is applied on CA(S′) until saturation yielding a set S′′, where
P denotes the set of clauses that logically entail at least one clause in CA(S′).
It is clear that this set of clauses is closed under subsumption, hence by The-
orem 2, we eventually obtain a set of clauses CA(S′′) v IA(CA(S′))∩P. But
IA(CA(S′)) ∩ P v CA(S′), hence CA(S′′) v CA(S′), and CA(S′′) ≡ IA(S).
The set of clauses CA(S′′) can therefore be considered as a concise represen-
tation of IA(S). This approach is appealing since CA(S′′) is in generally much
smaller than IA(S), and contrary to CA(S′), this set is free of redundancies.

Another straightforward method to eliminate redundant literals from the clauses
in CA(S′) without having to explicitly compute the set IA(S

′) is to test, for every

sofronie
Typewritten Text
8

clause l∨C ∈ CA(S′), whether the relation CA(S′) |= C, holds, if which case the
literal l can be safely removed. The test can be performed by using any decision
procedure for ground equational logic (see for instance [28]). See [10] for a similar
approach.

Another calculus was proposed in [15] to generate implicates of ground �at
clauses. This calculus is very similar to the restriction of SA≺sel to abstracted
�at clauses, except that constraints are attached to the clauses as additional
literals (e.g., a c-clause [x ' y |{x 6' a, y 6' b, c ' d}] is represented as the clause
a ' b ∨ c 6' d). As a consequence, several additional inferences are possible,
because superposition inferences can be performed on literals in the constraints,
but the total number of clause representatives is reduced as explained above.
Furthermore, the redundancy criterion used in [15] is more liberal than the one
considered in the present paper: in order to keep the clause sets as compact as
possible, all clauses that are logically entailed by an existing clause are considered
as redundant1. An important consequence is that a new inference rule had to be
devised to perform superposition inferences simultaneously on several negative
literals, so that completeness can be enforced despite this weaker redundancy
criterion.

4 Termination Results

In this section we relate the termination behavior of SA≺sel to that of the usual
superposition calculus in the case where Fi = ∅. We �rst introduce restricted
ordering and redundancy criteria.

De�nition 8. For all expressions (terms, atoms, literals or clauses) t and s, we
write t �A s if t′ � s′ holds for all expressions t′, s′ that are identical to t and s
respectively, up to a renaming of constants in A. We denote by selA the selection
function de�ned as follows: for every clause l ∨C, l ∈ selA(l ∨C) if there exists
l′, C ′ such that l′ ∈ sel(l′ ∨ C ′) and l′, C ′ are identical to l and C respectively,
up to a renaming of constant symbols in A.

We show that most termination results for the calculus SP≺A
selA

also apply to

SA≺sel. To this purpose, we consider a restricted form of redundancy testing.

De�nition 9. An ordinary clause C is strongly redundant in a set of ordinary
clauses S i� for every clause C ′ that is identical to C up to a renaming of
constants in A, C ′ is A-redundant in S.

We denote by EA the set of unit clauses a ' b or a 6' b, with a, b ∈ A. For any
set of clauses S, let S? be the set of clauses inductively de�ned as follows.

� S ⊆ S?.

1 The redundancy criterion used in [15] is actually not exactly logical entailment, but
a slight restriction of it, so that the factors of a clause are not redundant w.r.t. their
premise.

sofronie
Typewritten Text
9

� If C is not strongly redundant in S and is deducible from S?∪EA by applying
the rules in SP≺A

selA
(in one step) then C ∈ S?.

Theorem 4. Let S be a set of clauses. If S? is �nite then SA≺sel terminates on
S (up to redundancy).

In order to prove that SA≺sel terminates on some class of clause sets S, it su�ces
to prove that S? is �nite, for every S ∈ S. The calculus SP≺A

sel is slightly less
restrictive than the usual superposition calculus SP≺sel, since ≺A is a stronger
relation than ≺ and selA(C) ⊇ sel(C). However, most of the usual termination
results for the superposition calculus still hold for SP≺A

sel , because they are closed
under the addition of equalities between constants and do not depend on the
order of constant symbols. Similarly, redundancy testing is usually restricted to
subsumption and tautology detection. In particular, all the termination results
in [3] are preserved (it is easy to check that S? is �nite for the considered sets
of axioms).

An interesting continuation of the present work would be to devise formal
(automated) proofs of the termination of SA≺sel on the usual theories of interest in
program veri�cation (enriched by arbitrary ground clauses). This could be done
by using existing schematic calculi [22, 23] to compute a symbolic representation
of the set of c-clauses S?.

5 Representation of Ground Flat Clauses Modulo

Equality

The number of ground �at implicates of a given formula is often huge, thus
it is essential in practice to provide compact representations for such sets, as
well as e�cient algorithms for detecting and discarding redundant clauses. In
propositional logic, detecting redundant clauses is an easy task, because, for all
clauses C,D, we have D |= C i� either C is a tautology or D ⊆ C. Thus a
non-tautological clause C is redundant in a clause set S i� either C contains
two complementary literals or if there exists a clause D ∈ S such that D ⊆ C.
The clause set S can thus be conveniently represented as a trie (a tree-based
data-structure commonly used to represent sets of strings, see for instance [17]),
and inclusion can be tested e�ciently using standard algorithms (the literals are
totally ordered and sorted to handle commutativity of ∨). However, in equational
logic, the above equivalence does not hold: for example we have a ' c |= a 6'
b ∨ b ' c and a ' c 6⊆ a 6' b ∨ b ' c. Representing clause sets as tries would
therefore yield many undesired redundancies: for instance the clauses a 6' b∨b '
c and a 6' b ∨ a ' c would be both stored, although they are equivalent. In
this section (adapted from [15]), we provide a new redundancy criterion that
generalizes subsumption, together with a new technique for representing clauses,
that takes into account the special properties of the equality predicate. Unless
stated otherwise, we assume that all the clauses considered in this section are
A-�at and ground.

sofronie
Typewritten Text
10

5.1 Testing Logical Entailment

In what follows, we introduce the notion of C-representativity, which is used to
de�ne the normalized form of a clause in such a way that equivalent clauses have
the same normalized form, and to de�ne a syntactic test for logical entailment.
Let C be a clause.

De�nition 10. The C-representative of a constant a is the constant a�C
def

=
min≺{b ∈ C | ¬C |= b ' a} (it is clear that all constants have a representa-
tive, since a 6' a |= C). This notion extends to literals and clauses as follows:

(a ./ b)�C
def

= a�C ./ b�C and D�C
def

= {l�C | l ∈ D}. The expression E�C is called
the projection of E on C. We write E ≡C E′ if E�C = E′�C .

By de�nition, ≡C is an equivalence relation and the following equivalences hold:

(a ≡C b)⇔ (a 6' b |= C)⇔ (¬C |= a ' b)

The next proposition introduces a notion of normal form for equational
clauses. Intuitively, all constants a occurring in a clause C are replaced by their
representatives a�C , and all inequations a ' a�C where a 6= a�C are appended
to the clause. This normal form will permit to test e�ciently whether a clause
is tautological and whether two clauses are equivalent.

Proposition 1. Every clause C is equivalent to the clause:

C↓
def

=
∨

a∈C,a6=a�C

a 6' a�C ∨
∨

a'b∈C

a�C ' b�C

Furthermore, C is a tautology i� C↓ contains a literal a ' a. A non-tautological
clause C is in normal form if C = C↓ and if, moreover, all literals occur at most
once in C.

The following de�nition introduces conditions that will permit to design ef-
�cient methods to test if a given clause is redundant w.r.t. those stored in the
database (forward subsumption) and conversely to delete from the database all
clauses that are redundant w.r.t. a newly generated clause (backward subsump-
tion).

De�nition 11. Let C,D be two clauses. The clause D eq-subsumes C (written
D ≤eq C) i� the two following conditions hold.

� ≡D⊆≡C (i.e. every negative literal in D�C is a contradiction).
� For every positive literal l ∈ D, there exists a literal l′ ∈ C such that l ≡C l′.

If S, S′ are sets of clauses, we write S ≤eq C if there exists D ∈ S such that
D ≤eq C and we write S ≤eq S

′ if ∀C ∈ S′, S ≤eq C. A clause C is eq-redundant
in S if either C is a tautology or if there exists a clause D ∈ S such that D 6≡ C
and D |= C. A clause set S is eq-subsumption-minimal if it contains no eq-
redundant clause.

sofronie
Typewritten Text

sofronie
Typewritten Text
11

Intuitively, eq-subsumption consists in verifying that ¬C |= ¬D. This is done
by �rst checking that all equations in ¬D are logical consequences of those in
¬C, which can be easily done by checking that the relation ≡D⊆≡C holds. Now,
consider a negative literal l in ¬D. The literal l can only be entailed by ¬C if
¬C contains a literal l′ which can be reduced to l by the relation ≡C .

Theorem 5. Let C and D be two clauses. If C is not a tautology then D |= C
i� D ≤eq C.

5.2 Clausal Trees

We de�ne data-structures for storing and retrieving generated clauses, in such
a way that the redundancy criterion introduced in Section 5.1 can be tested
e�ciently using Theorem 5. We use for this purpose a tree data-structure, called a
clausal tree, speci�cally tailored to store sets of literals while taking into account
the speci�c properties of the equality predicate (among these properties only
transitivity is important, since re�exivity and commutativity are easy to handle
by using normalization w.r.t. some ordering among constants). As in tries, the
edges of the tree are labeled by literals and the leaves are either 2 (representing
the empty clause) or ∅ (the failure node, representing an empty set of clauses).
Each branch leading to a leaf 2 represents a clause de�ned as the disjunction of
the literals labeling the edges in the branch. Failure nodes are useful mainly to
represent empty sets � in fact they can always be eliminated by straightforward
simpli�cation rules, except if the root itself is labeled by ∅.

De�nition 12. A clausal tree is inductively de�ned as either 2, or a set of pairs
of the form (l, T ′) where l is a literal and T ′ a clausal tree. The set of clauses
represented by a clausal tree T is denoted by Sc(T) and de�ned inductively as
follows:

Sc(T) =


{2} if T = 2⋃

(l,T ′)∈T

 ⋃
D∈Sc(T ′)

l ∨D

 otherwise.

Example 1. The structure T below is a clausal tree. There is no failure node,
and for readability the labels are associated with the nodes rather than with the
edges leading to them.

T

a ' b

a ' c

a 6' b

a ' c c 6' d

a ' c c ' e

sofronie
Typewritten Text

sofronie
Typewritten Text
12

The represented clauses Sc(T) are:

a ' b ∨ a ' c
a 6' b ∨ a ' c
a 6' b ∨ c 6' d ∨ a ' c
a 6' b ∨ c 6' d ∨ c ' e

We impose additional conditions on the clausal tree, in order to ensure that
the represented clauses are in normal form and that sharing is maximal (for
instance to ensure that there are no two edges starting from the same node and
labeled by the same literal). Furthermore, the literals occurring along a given
branch are ordered using the usual multiset extension of ≺, with the additional
constraint that negative literals always occur before positive ones. The intu-
ition behind this de�nition is that the negative literals occurring in a clause C
specify in some sense the �value� of the constant symbols in C (i.e. their C-
representative). Since the representatives of the positive literals depend on these
values, it is necessary to ensure that every negative literal is known before pos-
itive ones can be stored. More formally, we de�ne an ordering / on literals as
follows.

� If l is a negative literal and l′ is a positive literal, then l / l′.
� If l and l′ have the same sign, with l = (b ./ a), l′ = (d ./ c), b � a and d � c

then l / l′ i� either b ≺ d or (b = d and a ≺ c).

De�nition 13. A clausal tree T is normal if for any pair (l, T ′) in T , the fol-
lowing conditions hold.

� T ′ 6= ∅.
� There is no T ′′ 6= T ′ such that (l, T ′′) ∈ T .
� The literal l is not of the form a ' a or a 6' a.
� All literals occurring in T ′ are strictly greater than l w.r.t. /.
� If l = a 6' b with a ≺ b then b does not occur in T ′.
� The clausal tree T ′ is a normal clausal tree.

It is easy to verify that if T is a normal clausal tree then all the clauses in Sc(T)
are in normal form.

Normal clausal trees are used to store the set of A-implicates generated so
far, and this set has to be updated every time a more general A-implicate is
generated: all the stored A-implicates that it entails must be deleted. We now
introduce two algorithms for testing whether a newly generated A-implicate is
entailed by one already stored in a clausal tree, and for deleting from a clausal
tree all A-implicates logically entailed by the newly generated one. The �rst
algorithm (isEntailed) is invoked on a clause C and a tree T , and returns true
if and only if there exists a clause D in Sc(T) such that D eq-subsumes C. To test
this entailment, the algorithm performs a depth-�rst traversal of T and attempts
to project every encountered literal on C (see De�nition 10). If a literal cannot
be projected, the exploration of the subtree associated to this literal is useless, so
the algorithm switches to the following literal. As soon as a clause entailing C is

sofronie
Typewritten Text
13

found, the traversal halts and true is returned. For the sake of readability we use
the following notations. For any expression E, E[a := b] denotes the expression
obtained from E by replacing all occurrences of a by b. For any clausal tree T

and literal l, we denote by l.T the clausal tree l.T
def

= {(l, T)}.

Theorem 6. The procedure isEntailed terminates in O(size(Sc(T)) + |C| ×
|Sc(T)|). Moreover, isEntailed(C, T) is true i� Sc(T) contains a clause D such
that D ≤eq C.

Algorithm 1 isEntailed(C, T)

if T = 2 then

return true
end if

if C = 2 then

return false
end if

l1 ← min
/
{l ∈ C}

for all (l, T ′) ∈ T such that l ≥ l1 do

if l1 = a 6' b, with a � b then
if l = l1 then

if isEntailed(C \ {l1}, T ′) then
return true

end if

else if ¬(l = a 6' c), with a � c then
if isEntailed(C \ {l1}, (l.T ′)[a := b]) then

return true
end if

end if

else if l ∈ C then

if isEntailed(C \ {l}, T ′) then
return true

end if

end if

end for

return false

The second algorithm (pruneEntailed) deletes from a tree T all clauses
that are eq-subsumed by C. It performs a depth-�rst traversal of T and attempts
to project C on every clause in Sc(T), deleting those on which such a projection
succeeds. As soon as a projection is identi�ed as impossible, the exploration of
the associated subtree halts and the algorithm moves on to the next clause. When
every literal in C has been projected, all the clauses represented in the current
subtree are entailed by C, and are therefore deleted. Afterward, the clause C
can itself be added in the tree (the insertion algorithm is straightforward and is
omitted).

sofronie
Typewritten Text
14

Theorem 7. The procedure pruneEntailed terminates in O(size(Sc(T))).
Moreover, pruneEntailed(C, T) is a normal clausal tree and
Sc(pruneEntailed(C, T)) contains exactly the clauses D ∈ Sc(T) such
that C 6≤eq D.

Algorithm 2 pruneEntailed(C, T)

if C = 2 then

return ∅
end if

if T = 2 then

return T
end if

l1 ← min
/
{li ∈ C}

for all (l, T ′) ∈ T such that l ≤ l1 do

if l1 = l then
T ′′ := pruneEntailed(C \ {l1}, T ′)

else

if l = a ' b then
T ′′ := pruneEntailed(C, T ′)

else if l = a 6' b, with a � b
and @c, l1 = a 6' c, with a � c then
T ′′ := pruneEntailed(C[a := b], T ′)

end if

end if

T := (T \ {(l, T ′)}) ∪ {(l, T ′′)}
end for

return T

The presented techniques can be extended straightforwardly to store ground
�at c-clauses instead of ordinary clauses: it su�ces to insert a second index at
every leaf in order to store the constraints. Both data-structures are handled
similarly, the only di�erence is that a comparison must be added to verify that
the clausal part of the subsuming c-clause is indeed smaller than the subsumed
one.

6 Conclusion

Although the superposition calculus is not deductive-complete in general, we
have shown that it can be adapted in order to make it able to generate all
implicates de�ned over a given �nite set of ground terms denoted by constant
symbols. Furthermore, this is done in such a way that the usual termination
properties of the calculus are preserved. By duality, the procedure can be used
to generate abductive explanations of �rst-order formulas.

sofronie
Typewritten Text
15

Our calculus shares some similarities with the constrained superposition cal-
culi of [5, 1, 6]. However in our case the constraint and clausal parts are not de-
�ned over disjoint signatures: in contrast the Assertion rules allow one to transfer
literals from the clausal part to the constraints. In [5, 1, 6] the constraints are
used to store formulas that cannot be handled by the superposition calculus,
whereas in our case they are used to store properties that are asserted instead
of being proved.

A drawback with this calculus is that the user has to explicitly declare the
set of abducible terms (i.e., the constants in A). This set must be �nite and must
contain built-in constants (such as true or 0). Note that, thanks to Theorem
2, unsatis�able or irrelevant implicates (such as 0 ' 1) can be easily detected
and discarded on the �y during proof search. Handling in�nite (but recursive)
sets of terms is possible from a theoretical point of view: it su�ces to add an
inference rule generating clauses of the form a ' t, where t is an abducible
ground terms and a is a fresh constant symbol. It is straightforward to check
that completeness is preserved, but of course termination is lost. A way to recover
termination is to develop additional techniques to restrict the application of this
rule by selecting the terms t. This could be done either statically, from the
initial set of clauses, or dynamically, from the information deduced during proof
search. Roughly speaking, the addition of an equation a ' t is useless if it
cannot generate A-�at-clauses, and this could be proven automatically at least
in some particular cases. Using existing calculi for symbolically computing sets
of consequences of a given schema of clauses could be used for this purpose (see,
e.g., [23]). Such a criterion could be useful also if the considered set of terms is
�nite, since it can reduce the search space.

Another possible extension is to assume that the set of abducibles is itself
de�ned by a �rst-order formula (provided by the user). In this case, proving that
a term is abducible becomes part of the derivation generating the corresponding
implicate.

References

1. E. Althaus, E. Kruglov, and C. Weidenbach. Superposition modulo linear arith-
metic sup(la). In S. Ghilardi and R. Sebastiani, editors, FroCoS 2009, volume 5749
of LNCS, pages 84�99. Springer, 2009.

2. A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz. New results on rewrite-
based satis�ability procedures. ACM Transactions on Computational Logic,
10(1):129�179, January 2009.

3. A. Armando, S. Ranise, and M. Rusinowitch. A rewriting approach to satis�ability
procedures. Information and Computation, 183(2):140�164, 2003.

4. L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with
selection and simpli�cation. Journal of Logic and Computation, 3(4):217�247, 1994.

5. L. Bachmair, H. Ganzinger, and U. Waldmann. Refutational theorem proving for
hierarchic �rst-order theories. Applicable Algebra in Engineering, Communication
and Computing, 5(3):193�212, 1994.

sofronie
Typewritten Text
16

6. P. Baumgartner and U. Waldmann. Hierarchic superposition with weak abstrac-
tion. In M. P. Bonacina, editor, CADE, volume 7898 of Lecture Notes in Computer
Science, pages 39�57. Springer, 2013.

7. R. Caferra, A. Leitsch, and N. Peltier. Automated Model Building, volume 31 of
Applied Logic Series. Kluwer Academic Publishers, 2004.

8. T. Castell. Computation of prime implicates and prime implicants by a variant of
the davis and putnam procedure. In ICTAI, pages 428�429, 1996.

9. J. De Kleer. An improved incremental algorithm for generating prime implicates.
In Proceedings of the National Conference on Arti�cial Intelligence, pages 780�780.
John Wiley & Sons ltd, 1992.

10. I. Dillig, T. Dillig, and A. Aiken. Small formulas for large programs: On-line
constraint simpli�cation in scalable static analysis. In R. Cousot and M. Martel,
editors, SAS, volume 6337 of Lecture Notes in Computer Science, pages 236�252.
Springer, 2010.

11. I. Dillig, T. Dillig, K. L. McMillan, and A. Aiken. Minimum satisfying assignments
for smt. In P. Madhusudan and S. A. Seshia, editors, CAV, volume 7358 of Lecture
Notes in Computer Science, pages 394�409. Springer, 2012.

12. M. Echenim and N. Peltier. A Calculus for Generating Ground Explanations.
Technical report, CoRR, abs/1201.5954, 2012.

13. M. Echenim and N. Peltier. A Calculus for Generating Ground Explanations. In
Proceedings of the International Joint Conference on Automated Reasoning (IJ-
CAR'12), volume 7364, pages 194�209. Springer LNCS, 2012.

14. M. Echenim and N. Peltier. A Superposition Calculus for Abductive Reasoning.
Technical report, CoRR, abs/1406.0303, 2014.

15. M. Echenim, N. Peltier, and S. Tourret. An approach to abductive reasoning in
equational logic. In Proceedings of IJCAI'13 (International Conference on Arti�cial
Intelligence), pages 3�9. AAAI, 2013.

16. M. Echenim, N. Peltier, and S. Tourret. An Approach to Abductive Reasoning
in Equational Logic (long version). Technical report, LIG, 2013. http://membres-
lig.imag.fr/peltier/EPT13.pdf.

17. E. Fredkin. Trie memory. Commun. ACM, 3(9):490�499, 1960.

18. L. Henocque. The prime normal form of boolean formulas. Technical report at
http://www.Isis.org/�che.php, 2002.

19. P. Jackson and J. Pais. Computing prime implicants. In 10th International Con-
ference on Automated Deduction, pages 543�557. Springer, 1990.

20. A. Kean and G. Tsiknis. An incremental method for generating prime impli-
cants/implicates. Journal of Symbolic Computation, 9(2):185�206, 1990.

21. E. Knill, P. Cox, and T. Pietrzykowski. Equality and abductive residua for horn
clauses. Theoretical Computer Science, 120:1�44, 1992.

22. C. Lynch and B. Morawska. Automatic Decidability. In Proc. of 17th IEEE
Symposium on Logic in Computer Science (LICS'2002), pages 7�16, Copenhagen,
Denmark, July 2002. IEEE Computer Society.

23. C. Lynch, S. Ranise, C. Ringeissen, and D.-K. Tran. Automatic decidability and
combinability. Information and Computation, 209(7):1026 � 1047, 2011.

24. P. Marquis. Extending abduction from propositional to �rst-order logic. In P. Jor-
rand and J. Kelemen, editors, FAIR, volume 535 of Lecture Notes in Computer
Science, pages 141�155. Springer, 1991.

25. A. Matusiewicz, N. Murray, and E. Rosenthal. Prime implicate tries. Automated
Reasoning with Analytic Tableaux and Related Methods, pages 250�264, 2009.

sofronie
Typewritten Text

sofronie
Typewritten Text
17

26. A. Matusiewicz, N. Murray, and E. Rosenthal. Tri-based set operations and selec-
tive computation of prime implicates. Foundations of Intelligent Systems, pages
203�213, 2011.

27. M. C. Mayer and F. Pirri. First order abduction via tableau and sequent calculi.
Logic Journal of the IGPL, 1(1):99�117, 1993.

28. O. Meir and O. Strichman. Yet another decision procedure for equality logic. In
Proceedings of the 17th International Conference on Computer Aided Veri�cation,
CAV'05, pages 307�320, Berlin, Heidelberg, 2005. Springer-Verlag.

29. H. Nabeshima, K. Iwanuma, and K. Inoue. Solar: A consequence �nding system
for advanced reasoning. In M. C. Mayer and F. Pirri, editors, TABLEAUX, volume
2796 of Lecture Notes in Computer Science, pages 257�263. Springer, 2003.

30. R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In J. A.
Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, pages 371�
443. Elsevier and MIT Press, 2001.

31. L. Simon and A. Del Val. E�cient consequence �nding. In Proceedings of the 17th
International Joint Conference on Arti�cial Intelligence, pages 359�370, 2001.

32. P. Tison. Generalization of consensus theory and application to the minimization
of boolean functions. Electronic Computers, IEEE Transactions on, 4:446�456,
1967.

sofronie
Typewritten Text
18

Satisfiability Modulo Non-Disjoint Combinations
of Theories Connected via Bridging Functions

Work in progress

Paula Chocron1,3, Pascal Fontaine2, and Christophe Ringeissen3?

1 Universidad de Buenos Aires, Argentina
2 INRIA, Université de Lorraine & LORIA, Nancy, France

3 INRIA & LORIA, Nancy, France

1 Introduction

Solving the satisfiability problem modulo a theory given as a union of decid-
able sub-theories naturally calls for combination methods. The Nelson-Oppen
combination method [11] has been developed more than 30 years ago, and is
now ubiquitous in SMT (Satisfiability Modulo Theories) solvers. However, this
technique imposes strong assumptions on the theories in the combination; in the
classical scheme [11,20], the theories notably have to be signature-disjoint and
stably infinite. Many recent advances aim to go beyond these two limitations.

The design of a combination method for non-disjoint unions of theories is
clearly a hard task [21,9]. To stay within the frontiers of decidability, it is neces-
sary to impose restrictions on the theories in the combination; and at the same
time, those restrictions should not be such that there is no hope of concrete
applications for the combination scheme. For this reason, it is worth exploring
specific classes of non-disjoint combinations of theories that appear frequently
in software specification, and for which it would be useful to have a simple
combination procedure. An example is the case of shared sets, where sets are
represented by unary predicates [22,19,6]. In this context, the cardinality opera-
tor can also be considered; notice that this operator is a bridging function from
sets to natural numbers [25]. In this paper, we investigate the case of bridging
functions between data structures and a target theory (e.g. a fragment of arith-
metic). Here, non-disjointness arises from connecting two disjoint theories via a
third theory defining the bridging function. This problem has attracted a lot of
interest in the last few years [26,8,3,16,17] due to its importance for solving ver-
ification problems expressed in a combination of data structures and arithmetic.
With this work, we want to provide a synthesis of several previous contributions
by different authors based on different techniques and frameworks. We mainly
focus on the following papers that are closely related in terms of the considered
data structures:

? This work has been partially supported by the project ANR-13-IS02-0001 of the
Agence Nationale de la Recherche, by the European Union Seventh Framework Pro-
gramme under grant agreement no. 295261 (MEALS), and by the STIC AmSud
MISMT

sofronie
Typewritten Text

sofronie
Typewritten Text

sofronie
Typewritten Text
19

– Zarba presents a procedure for checking satisfiability of lists with length
by using a reduction to the arithmetic [23]. The same kind of reduction is
applied to multisets with multiplicity [24]. A goal was to relax the stably-
infiniteness assumption in Nelson-Oppen’s procedure; it is indeed possible
to consider for instance multisets with a finite domain for elements. In his
work, Zarba is able to reduce the problem into one expressed only in the
theory of elements; the theory of lists (multisets) completely vanishes.

– Sofronie-Stokkermans [16] uses a locality property to show that the definition
of the function connecting the theories can be eliminated (thanks to its
instantiation by ground terms). She also considers the delicate problem of
restricting models to standard ones (for data structures). A drawback of her
solution is that it excludes cases where cardinality problems might arise from
lack of elements to build structures that must be different.

– In [17], Suter and al. present a procedure to solve cardinality problems that
is also based on a procedure for reducing bridging functions. As future work,
they suggest to study relations between their work and the one in [16].

We investigate here an approach by reduction from non-disjoint to disjoint
combination. The outcome of our approach is very close to that of the locality-
based approach [16]. It is an alternative to a non-disjoint combination approach
à la Ghilardi [9], for which some assumptions on the shared (target) theory are
required. Ghilardi’s approach has been applied to combine data structures with
fragments of arithmetic, like Integer Offsets [13] and then Abelian groups [12];
it is however difficult to go beyond Abelian groups and consider for instance any
decidable fragment of arithmetic as a shared theory. The approach by reduction
does not impose such limitations, and any (decidable) fragment of arithmetic is
suitable for the target (shared) theory.

The superposition calculi provide elegant and uniform ways to build sat-
isfiability procedures for (combinations of) data-structures [2,1], possibly with
bridging functions [13,12,10,4]. It appears that the approach by reduction is ap-
plicable to many data structures for which the standard superposition calculus
can be used as an off-the-shelf underlying satisfiability procedure [2,1]. This ap-
proach by reduction leads to a combination procedure (see Section 3) which is
indeed correct for a large class of data structure theories, ranging from the theory
of equality to the theory of absolutely free data structures. Our correctness proof
is not (directly) based on locality principles, but we rely on the form of Herbrand
models we can expect from the data structure theories we are interested in.

When considering data structures, it is quite natural to restrict to standard
interpretations. For instance, the standard interpretation for lists corresponds
to the case where lists are interpreted as finite lists of elements. We show how
to adapt the combination procedure to get a satisfiability procedure on stan-
dard interpretations, when the bridging function is stable. The notion of stable
function encompasses both bijectivity and infinite surjectivity (defined in [17]).
Moreover, we propose an enumeration procedure which has similarities with the
procedure studied in [17,18,14]. This enumeration procedure allows to revisit the
satisfiability problem in the standard interpretation of lists with length [8]. More

sofronie
Typewritten Text
20

generally, we conjecture that this procedure can be applied to data structures
satisfying some gentle properties as defined in [7].

The work presented in this short paper corresponds to a part of [5], where
the enumeration procedure mentioned above is detailed in the case of lists with
a length function and its correctness is proven. We are now working on a full
paper extending the short presentation given below.

2 The Combination Problem

We assume the reader is familiar with the classical notions and notations used
in first-order logic with equality. By a slight abuse of notation, we write that a
sort occurs in a signature if the sort belongs to the set of sorts of the signature.

Consider a many-sorted Σs-theory Ts and a many-sorted Σt-theory Tt (s
and t stand for source and target respectively) such that Σs and Σt have no
shared function symbols and no shared predicate symbols except the equality
predicates: we have a shared equality predicate for each shared sort occurring in
both Σs and Σt. Roughly speaking, we consider a function f mapping elements
from Ts to elements in Tt. This function is defined by some axioms expressed in
the signature Σs ∪Σt ∪ {f}. The set of axioms defining f is called Tf .

The difficulty of building a decision procedure for the theories connected with
the bridging function depends on many factors, for example, how f is defined.
In some cases there exists a very simple solution: since we are dealing with first
order logic, f always occurs applied to the appropriate number of terms. In all
those occurrences f could be substituted by its definition. The result may then
be a disjoint problem. This is possible when f is defined by an equality like
f(x) = e, for some Σt-term e. This naive approach is not suitable for more
complicated definitions. Particularly, it cannot be used for recursively defined
bridging functions, like those commonly found for data structures. We introduce
a procedure dedicated to that problem. The idea is to eliminate the function
symbol f , expressing its definition using just Σs ∪ Σt. If this maintains satis-
fiability, our problem has been reduced to a disjoint one, and any combination
method we know for this problem can be used.

Let us now introduce the theories Ts, Tt and Tf we focus on. The theory Ts is
the theory of Absolutely Free Data Structures [16] (AFDS, for short) as defined
below, and Tf is a bridging theory connecting it to another theory Tt.

Definition 1. Consider a set of sorts Elem, and a sort struct /∈ Elem. Let Σ
be a signature whose set of sorts is {struct}∪Elem and whose function symbols
c ∈ Σ (called constructors) have arities of the form:

c : s1 × · · · × sm × struct× · · · × struct→ struct

where s1, . . . , sm ∈ Elem. Consider the following axioms (where upper case letters
denote implicitly universally quantified variables) (Inj c) c(X1, . . . , Xn) = c(Y1, . . . , Yn)⇒

∧n
i=1Xi = Yi

(Clashc,d) c(X1, . . . , Xn) 6= d(Y1, . . . , Ym)
(AcycΣ) X 6= t[X] if t is a non-variable Σ-term

sofronie
Typewritten Text

sofronie
Typewritten Text

sofronie
Typewritten Text

sofronie
Typewritten Text
21

The theory of Absolutely Free Data Structures over Σ is

AFDSΣ =
(⋃
c∈Σ

Inj c
)
∪
(⋃
c,d∈Σ,c6=d

Clashc,d
)
∪AcycΣ

Example 1. The theory of lists is an example of AFDS where the constructors
are cons : elem× list→ list and nil : list. The theory of pairs (of numbers)
is another example of AFDS where the constructor is pair : num×num→ struct.

For sake of simplicity, we only consider Absolutely Free Data Structures
without selector functions, but it would be easy to consider these additional
functions in the presented framework.

Given a tuple e of terms of sorts in Elem and a tuple t of terms of sort
struct, the tuple e, t may be written e; t to distinguish terms of sort struct

from the other ones.

Definition 2. Let Σ be a signature as given in Definition 1 and let Σt be a
signature such that Σ and Σt have distinct function symbols, and may share
sorts, except struct. A bridging function f /∈ Σ ∪ Σt has arity struct → t

where t is a sort in Σt. A bridging theory Tf associated to a bridging function
f is has the form:

Tf =
⋃
c∈Σ

{
∀e∀t1, . . . , tn . f(c(e; t1, . . . , tn)) = fc(e; f(t1), . . . , f(tn))

}
where fc(x;y) denotes a Σt-term.

Remark that the notation fc(x;y) does not mean that all elements of x;y must
occur in the term fc(x;y), as shown in the first case of the example below.

Example 2. (Example 1 continued). Many useful bridging theories fall into the
above definition such as:

– Length of lists: `(cons(e, y)) = 1 + `(y), `(nil) = 0
– Sum of lists of numbers: lsum(cons(e, y)) = e+ lsum(y), lsum(nil) = 0
– Sum of pairs of numbers: psum(pair(e, e′)) = e+ e′

3 A Combination Procedure for Bridging Functions

We introduce a combination method for a particular non-disjoint union of the-
ories made of a source theory, a target theory, and a third one defining the
bridging theory. Let T be the union of Ts = AFDSΣs

, Tt and Tf as given in
Definition 2. For simplicity, we assume that Tt is stably infinite for sorts in
Σs ∩Σt: any Tt-satisfiable set of literals is satisfiable in a model of Tt such that
the domain associated to each sort in Σs ∩ Σt is infinite. The Nelson-Oppen
combination method in its simplest presentation can then be reused. More gen-
erally, we could consider an arbitrary target theory Tt and rely on a property of
the data structure theory Ts that may be stronger than stably infiniteness [15,7].
We describe below a decision procedure for checking the T -satisfiability of sets
of ground literals.

sofronie
Typewritten Text
22

First phase: Variable Abstraction and Partition. The first phase of our decision
procedure takes an input set of mixed literals ϕ, and converts it into sets of flat
(and so pure) literals. As usual, a flat equality is an equality t0 = f(t1, . . . , tn)
where each term ti is of depth 0 for i = 0, . . . , n with n ≥ 0 (a term of depth
0 is either a constant or a variable4); a flat disequality is a disequality between
two terms of depth 0. The output of this phase is an equisatisfiable formula
ϕstruct ∪ ϕelem ∪ ϕt ∪ ϕf such that:

– ϕstruct contains only flat literals of the following forms:
• x = y, where x and y are of sort struct
• x 6= y, where x and y are of sort struct
• x = k, where k is an atomic constructor
• x = c(e;x1, . . . , xn), where c is a non-atomic constructor

– ϕelem contains only flat literals of sorts in Σs\(Σt ∪ {struct})
– ϕt contains only flat Σt-literals
– ϕf contains only flat literals of the form u = f(x)

The procedure uses flattening: it introduces fresh variables to define sub-terms
in compound terms as a mean to obtain pure literals.

Second phase: Decomposition. In this phase, we make use of the following no-
tion: an arrangement over a set of variable symbols S is a maximal satisfiable
set of well-sorted equalities and inequalities a = b or a 6= b, with a, b ∈ S.
We build two sets of literals Γstruct and Γt that will be necessary to maintain
satisfiability: Γstruct and Γt are initialized with the same arrangement (guessed
non-deterministically) over the shared elements of sorts in Σs ∩Σt occurring in
both ϕstruct and ϕt ∪ ϕf .

Γstruct will keep the information of equivalence between elements of sort
struct. To do this, non-deterministically guess an arrangement over elements
of sort struct, and add it to Γstruct.

In Γt, add the collection of literals obtained by replacing all literals in ϕstruct∪
ϕf ∪ Γstruct with the following replacements:

1. x = y → fx = fy, where x, y are of sort struct
2. u = f(x)→ u = fx
3. x = k → fx = fk, where k is an atomic constructor
4. x = c(e;x1, . . . , xn) → fx = fc(e; fx1

, . . . , fxn
), where c is a non-atomic

constructor

Third phase: Check. The satisfiability check then reduces to two satisfiability
check for the disjoint decision procedures, thanks to the following lemma5

4 A variable can be considered as an uninterpreted constant if the satisfiability prob-
lem is viewed as a consistency problem in an expansion of the signature with fresh
constants.

5 The non-deterministic choices in the second phase have all to be checked before
concluding to unsatisfiability.

sofronie
Typewritten Text
23

Lemma 1. Let ϕ = ϕstruct∪ϕelem∪ϕt∪ϕf be a set of literals in separate form.
The combination procedure described above computes Γstruct and Γt such that ϕ
is T -satisfiable if and only if

– ϕstruct ∪ ϕelem ∪ Γstruct is Ts-satisfiable, and
– ϕt ∪ Γt is Tt-satisfiable.

Example 3. Consider the theory of (acyclic) lists with a length function `, and
suppose we want to check the satisfiability of the set of literals ϕ:{

x = cons(a, cons(b, z)), `(x) + 1 = `(z)
}

1. Variable Abstraction and Partition. ϕ will be divided into:
– ϕlist : {y = cons(b, z), x = cons(a, y)}
– ϕelem : ∅
– ϕZ : {c+ 1 = d}
– ϕ` : {`(x) = c, `(z) = d}, where c and d are new variables.

2. Decomposition. We create the variables `x, `y and `z, and the sets:
– Γlist: we need to guess an arrangement between the list variables. Let us

choose the one in which they are all different, so we will add to Γlist the
set of literals: {x 6= y, y 6= z, z 6= x} . This is the only arrangement that
is satisfiable together with ϕlist, so it is the only choice that may lead
to satisfiability.

– ΓZ: after performing the replacements, we will have the set of literals
{`y = `z + 1, `x = `y + 1, `x = c, `z = d}.

3. Check. The set ϕlist∪ϕelem∪Γlist is satisfiable in the theory of lists. However
ϕZ∪ΓZ is unsatisfiable in the theory of linear arithmetic (over the integers).
The original set of literals ϕ is thus unsatisfiable.

4 Conclusion

We briefly described a Nelson-Oppen like combination procedure for bridging
functions. This procedure is not only restricted to absolutely free data structures
(even if the current presentation only refers to this special case), but is also
suitable for any theory in the spectrum between uninterpreted symbols and
absolutely free data structures. A natural follow-up is to consider extensionality
and the restriction to standard interpretations [26,8,16,17,5]. For simplicity, the
presentation here is non-deterministic. However, just like in the classical Nelson-
Oppen scheme, implementations will be based on deterministic, and thus more
practical, approaches of the same procedure.

Several powerful and successful frameworks [3,12,16,17,4] have already been
provided to handle bridging functions. We believe our approach is more light-
weight, and is thus more amenable to implementation inside SMT solvers, just
like superposition calculi [2,1,4] are perfectly suited for saturation-based provers.

Acknowledgments: we would like to thank the reviewers for their insightful com-
ments. These will help us to complete the work briefly described in this short
version.

sofronie
Typewritten Text

sofronie
Typewritten Text
24

References

1. A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz. New results on rewrite-
based satisfiability procedures. ACM Trans. Comput. Log., 10(1), 2009.

2. A. Armando, S. Ranise, and M. Rusinowitch. A rewriting approach to satisfiability
procedures. Inf. Comput., 183(2):140–164, 2003.

3. F. Baader and S. Ghilardi. Connecting many-sorted theories. J. Symb. Log.,
72(2):535–583, 2007.

4. P. Baumgartner and U. Waldmann. Hierarchic superposition with weak abstrac-
tion. In Automated Deduction - CADE-24 - 24th International Conference on
Automated Deduction, Lake Placid, NY, USA, volume 7898 of Lecture Notes in
Computer Science, pages 39–57. Springer, 2013.

5. P. Chocron. A study of the Combination Problem: dealing with multiple theories
in SMT solving. Master’s thesis, Universidad de Buenos Aires, Mar. 2014.

6. P. Chocron, P. Fontaine, and C. Ringeissen. A Gentle Non-Disjoint Combination
of Satisfiability Procedures. In Proc. of the 7th International Joint Conference on
Automated Reasoning, IJCAR. Springer, 2014. Extended version available as Inria
Research Report, cf. http://hal.inria.fr/hal-00985135.

7. P. Fontaine. Combinations of theories for decidable fragments of first-order logic. In
S. Ghilardi and R. Sebastiani, editors, Frontiers of Combining Systems (FroCoS),
volume 5749 of LNCS, pages 263–278. Springer, 2009.

8. P. Fontaine, S. Ranise, and C. G. Zarba. Combining lists with non-stably infinite
theories. In F. Baader and A. Voronkov, editors, Logic for Programming, Artifi-
cial Intelligence, and Reasoning (LPAR’04), volume 3452 of LNCS, pages 51–66.
Springer-Verlag, 2005.

9. S. Ghilardi. Model-theoretic methods in combined constraint satisfiability. Journal
of Automated Reasoning, 33(3-4):221–249, 2004.

10. E. Kruglov and C. Weidenbach. Superposition decides the first-order logic fragment
over ground theories. Mathematics in Computer Science, 6(4):427–456, 2012.

11. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
ACM Trans. on Programming Languages and Systems, 1(2):245–257, Oct. 1979.

12. E. Nicolini, C. Ringeissen, and M. Rusinowitch. Combinable extensions of Abelian
groups. In R. A. Schmidt, editor, Proc. Conference on Automated Deduction
(CADE), volume 5663 of LNCS, pages 51–66. Springer, 2009.

13. E. Nicolini, C. Ringeissen, and M. Rusinowitch. Combining satisfiability procedures
for unions of theories with a shared counting operator. Fundam. Inform., 105(1-
2):163–187, 2010.

14. T.-H. Pham and M. W. Whalen. An improved unrolling-based decision procedure
for algebraic data types. In E. Cohen and A. Rybalchenko, editors, Verified Soft-
ware: Theories, Tools, Experiments - 5th International Conference, VSTTE 2013,
Menlo Park, CA, USA, Revised Selected Papers, volume 8164 of Lecture Notes in
Computer Science, pages 129–148. Springer, 2014.

15. S. Ranise, C. Ringeissen, and C. G. Zarba. Combining data structures with non-
stably infinite theories using many-sorted logic. In B. Gramlich, editor, Frontiers
of Combining Systems (FroCoS), volume 3717 of LNCS, pages 48–64. Springer,
2005.

16. V. Sofronie-Stokkermans. Locality results for certain extensions of theories with
bridging functions. In R. A. Schmidt, editor, Proc. Conference on Automated
Deduction (CADE), volume 5663 of LNCS, pages 67–83. Springer, 2009.

http://hal.inria.fr/hal-00985135
sofronie
Typewritten Text
25

17. P. Suter, M. Dotta, and V. Kuncak. Decision procedures for algebraic data types
with abstractions. In M. V. Hermenegildo and J. Palsberg, editors, Principles of
Programming Languages (POPL), pages 199–210. ACM, 2010.

18. P. Suter, A. S. Köksal, and V. Kuncak. Satisfiability modulo recursive programs.
In E. Yahav, editor, Static Analysis - 18th International Symposium, SAS 2011,
Venice, Italy, volume 6887 of Lecture Notes in Computer Science, pages 298–315.
Springer, 2011.

19. P. Suter, R. Steiger, and V. Kuncak. Sets with cardinality constraints in satisfiabil-
ity modulo theories. In Verification, Model Checking, and Abstract Interpretation
- 12th International Conference, VMCAI 2011, Austin, TX, USA, volume 6538 of
Lecture Notes in Computer Science, pages 403–418. Springer, 2011.

20. C. Tinelli and M. T. Harandi. A new correctness proof of the Nelson–Oppen combi-
nation procedure. In F. Baader and K. U. Schulz, editors, Frontiers of Combining
Systems (FroCoS), Applied Logic, pages 103–120. Kluwer Academic Publishers,
Mar. 1996.

21. C. Tinelli and C. Ringeissen. Unions of non-disjoint theories and combinations of
satisfiability procedures. Theoretical Comput. Sci., 290(1):291–353, Jan. 2003.

22. T. Wies, R. Piskac, and V. Kuncak. Combining theories with shared set opera-
tions. In S. Ghilardi and R. Sebastiani, editors, Frontiers of Combining Systems
(FroCoS), volume 5749 of LNCS, pages 366–382. Springer, 2009.

23. C. G. Zarba. Combining lists with integers. In International Joint Conference on
Automated Reasoning (Short Papers), Technical Report DII 11/01, pages 170–179.
University of, 2001.

24. C. G. Zarba. Combining multisets with integers. In A. Voronkov, editor, Automated
Deduction - CADE-18, 18th International Conference on Automated Deduction,
Copenhagen, Denmark, volume 2392 of Lecture Notes in Computer Science, pages
363–376. Springer, 2002.

25. C. G. Zarba. Combining sets with cardinals. J. Autom. Reasoning, 34(1):1–29,
2005.

26. T. Zhang, H. B. Sipma, and Z. Manna. Decision procedures for term algebras with
integer constraints. Inf. Comput., 204(10):1526–1574, 2006.

sofronie
Typewritten Text
26

Finding Minimum Type Error Sources

Zvonimir Pavlinovic, Tim King, and Thomas Wies

New York University

Abstract. Automatic type inference is a popular feature of functional program-
ming languages. If a program cannot be typed, the compiler typically reports a
single program location in its error message. This location is the point where the
type inference failed, but not necessarily the actual source of the error. Other po-
tential error sources are not even considered. Hence, the compiler often misses
the true error source, which increases debugging time for the programmer. In
this paper, we present a general framework for automatic localization of type er-
rors. Our algorithm finds all minimum error sources, where the exact definition
of minimum is given in terms of a compiler-specific ranking criterion. Compilers
can use minimum error sources to produce more meaningful error reports, and
for automatic error correction. Our approach works by reducing type inference
to constraint satisfaction. We then formulate the problem of computing mini-
mum error sources in terms of weighted maximum satisfiability modulo theories
(MaxSMT). Ranking criteria are incorporated by assigning weights to typing con-
straints. The reduction to MaxSMT allows us to build on decision procedures to
support rich type systems.

1 Introduction

In functional programming languages such as OCaml and Haskell, programmers are
not obliged to provide type annotations. Nevertheless, these languages guarantee strong
static typing by automatically inferring types based on how expressions are used in
the program. Unfortunately, the convenience of type inference comes at a cost: if the
program cannot be typed, the compiler-generated error message often does not help to
fix the error. Consequently, confusing error messages increase the debugging time. In
this paper, we present a general framework for producing more meaningful type error
messages.

A typical type inference algorithm immediately stops and reports an error at the
current program location if the inferred type of the current program expression conflicts
the inferred type of its context. Although fast in practice, this approach also produces
poor error diagnostics. For example, consider the following simple OCaml program
taken from the student benchmarks in [4]:

1 type ’a lst = Null | Cons of ’a * ’a lst
2 let x = Cons(3, Null)
3 let _ = print_string x

sofronie
Typewritten Text
27

The standard OCaml compiler reports a type mismatch error for expression x on line 3,
as the code before that expression is well typed. However, perhaps the programmer
defined x incorrectly on line 2 or misused the print string function. The student
author of this code confirmed that the latter is the real source of the error. This simple
example suggests that in order to generate useful error reports, compilers can consider
several possible error causes and rank them by their relevance. In this work, we pro-
pose a general algorithm based on constraint solving that supplies compilers with error
sources best matching their relevance criteria.

2 Overview of the Approach

Unlike typical type inference algorithms, we do not simply report the location of the
first observed type inconsistency. Instead, we compute all minimum sets of expressions
each of which, once corrected, yields a type correct program. The considered notion
of minimality is controlled by the compiler. For example, the compiler may only be
interested in those error causes that require the fewest changes to fix the program.

The crux of our approach is to reduce type error localization to the maximum satisfi-
ability modulo theory (MaxSMT) problem. Each program expression is assigned a type
variable and typing information is captured in terms of constraints over those variables.
If an input program has a type error, then the corresponding set of typing constraints is
unsatisfiable. We encode the compiler-specific ranking criterion by assigning weights
to the generated typing constraints. A weighted MaxSMT solver then computes the sat-
isfiable subsets of the constraints that have maximum cumulative weight. As constraints
directly map to program expressions, the complements of these maximum sets represent
minimum sets of program expressions that may have caused the type error.

We explain our reduction using the following OCaml program as an example:

let x = "hi" in not x

Clearly, the program is not well typed as the operation not on Booleans is applied to
a variable x of type string. Our constraint generation procedure takes the program
and generates a set of typing constraints using the OCaml type inference rules. For our
example program, the constraint generation produces the following set of assertions:

αnot = fun(bool, bool) [Def. of not] (1)
αapp = fun(αi, αo) not x (2)
αapp = αnot not (3)
αi = αx x (4)
αx = string x = "hi" (5)

Each assertion comes from a particular program expression shown to the right of the
assertion. For instance, the assertion (1) is generated from the definition of the func-
tion not in OCaml’s standard library. It specifies the type αnot of not as a function
type from bool to bool. The generated type constraint is interpreted in the theory of in-
ductive data types, where type variables stand for variables and other expressions, like

sofronie
Typewritten Text
28

fun and bool, are injective constructors. The generated type constraint is unsatisfiable,
confirming that there is a type error.

It is easy to see that removing one assertion from the generated typing constraints
makes the remaining set of assertions satisfiable. The expression corresponding to a re-
moved constraint is regarded as an error source, i.e., correcting that expression makes
the whole program well typed. In general, an error source is a set of program expres-
sions that, once corrected, yield a well typed program. A minimal error source is an
error source such that none of its proper subsets is also an error source. In our running
example, each program expression is a minimal error source.

Compilers incorporate ranking criteria by assigning weights to program expres-
sions. Smaller weights indicate that the corresponding expression is more likely con-
tributing to the type error. Given a ranking criterion, a minimum error source is an error
source with a minimum cumulative weight (i.e., it is also minimal). For example, con-
sider a ranking criterion that assigns to each program expression the weight equal to the
expression size in its abstract syntax tree form. Then, the expression corresponding to
the assertion (2) is not a minimum error source as it has weight 2, while other minimal
error sources have weight 1.

To find a minimum error source subject to a given a ranking criterion, our con-
straint generation procedure propagates weights from expressions to associated asser-
tions. Then, we use a weighted MaxSMT procedure to compute a maximum satisfiable
subset of these assertions. The program expressions that correspond to the complement
of these assertions constitute the minimum error source. We have implemented this al-
gorithm and applied it to the OCaml benchmarks from [4]. Our experiments showed
that our approach can find minimum error sources subject to useful ranking criteria. For
a detailed discussion of the algorithm and implementation we refer the reader to the
full paper, which is available at http://cs.nyu.edu/wies/publ/finding_
minimum_type_error_sources.pdf.

Complexity and Tractability. The decision problem that asks whether a given pro-
gram is well-typed with respect to the Hindley-Milner type system is EXPTIME-
complete [5,3]. Nevertheless, actual implementations of type checkers for OCaml and
other languages that are based on this type system achieve good performance in prac-
tice. This is possible because type checking can be done compositionally by computing
principle types using most general unifiers [6]. As explained above, we reduce the com-
plement of the type checking problem for Hindley-Milner to satisfiability modulo the
theory of inductive data types. This reduction preserves the complexity of the problem.
However, a naive handling of polymorphism in the constraint generation results in an
exponential explosion in the size of the generated constraints. This explosion quickly
leads to intractable performance, even for moderately sized programs.

The question is then how this exponential explosion can be deferred to take advan-
tage of the heuristics in the SMT solver that prune the search space and achieve good
performance in practice. In the extended version of this abstract, we discuss a possi-
ble answer to this question. Our approach combines two ideas. The first idea is to use
an encoding of type constraints for polymorphic functions that is based on stratified
quantified constraints. The resulting constraints are linear in the size of the input pro-
gram and remain decidable. The second idea is to make the optimistic assumption that

http://cs.nyu.edu/wies/publ/finding_minimum_type_error_sources.pdf
http://cs.nyu.edu/wies/publ/finding_minimum_type_error_sources.pdf
sofronie
Typewritten Text
29

most let-bound variables do not contribute to minimum type error sources. This idea
leads to an iterative algorithm in which the types of let-bound variables are summarized
by their principle types, i.e., the most general solutions of the associated typing con-
straints. Only if such a most general type occurs in a minimum type error source do
we expand its associated constraints and reiterate. While we have not yet implemented
this improved algorithm, we are confident that it will achieve considerable performance
improvements in practice.

3 Related Work and Conclusions

Closely related to our approach is the Seminal [4] tool, which computes several pos-
sible error sources by repeated calls to the type checker. However, the search for error
causes is based on heuristics and provides no formal guarantees that all error sources
are found, respectively, that they are ranked according to some criterion. Zhang and
Myers [8] encode typing information for Hindley-Milner type systems in terms of con-
straint graphs. The generated graphs are then analyzed to find most likely error sources
by using Bayesian inference. It is unclear how this approach would support more ex-
pressive type systems. Previous approaches based on constraint solving [1,7] produce
minimal but not minimum error sources and consider specific ranking criteria for spe-
cific type systems. Our approach is in part inspired by the Bug-Assist tool [2], which
uses a MaxSAT procedure for fault localization in imperative programs. However, the
problem we are solving is quite different.

In summary, we propose a novel framework for type error localization based on
constraint solving. Our framework enables compilers to search for error sources of par-
ticular interest and supports rich type systems by relying on SMT solvers.

References

1. C. Haack and J. B. Wells. Type error slicing in implicitly typed higher-order languages. Sci.
Comput. Program., pages 189–224, 2004.

2. M. Jose and R. Majumdar. Bug-Assist: Assisting Fault Localization in ANSI-C Programs. In
CAV, pages 504–509. Springer-Verlag, 2011.

3. A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. ML Typability is DEXTIME-Complete. In CAAP,
pages 206–220, 1990.

4. B. Lerner, M. Flower, D. Grossman, and C. Chambers. Searching for type-error messages. In
PLDI. ACM Press, 2007.

5. H. G. Mairson. Deciding ML Typability is Complete for Deterministic Exponential Time. In
POPL, pages 382–401, 1990.

6. J. A. Robinson. Computational logic: The unification computation. Machine intelligence,
6(63-72):10–1, 1971.

7. P. J. Stuckey, M. Sulzmann, and J. Wazny. Improving type error diagnosis. In ACM SIGPLAN
Workshop on Haskell, pages 80–91. ACM, 2004.

8. D. Zhang and A. C. Myers. Toward general diagnosis of static errors. In POPL, pages 569–
581. ACM, 2014.

sofronie
Typewritten Text
30

Decidability of Iteration-free PDL with Parallel
Composition

Philippe Balbiani and Joseph Boudou

Institut de recherche en informatique de Toulouse, Université de Toulouse
Joseph.Boudou@irit.fr, Philippe.Balbiani@irit.fr

Abstract. PRSPDL is a highly undecidable propositional dynamic logic
with an operator for parallel composition of programs. This operator has
a separation semantic such that a multiplicative conjunction similar to
the one found in the logic of Boolean bunched implications is defin-
able. The present work identifies an iteration-free decidable fragment
of PRSPDL in which the multiplicative conjunction is still definable. A
NEXPTIME complexity upper bound for the fragment is given.

1 Introduction

The propositional dynamic logic (PDL) is a multi-modal logic designed for rea-
soning about the behaviour of programs [7, 10, 9]. With each program α is as-
sociated the modal operator [α], formulas [α]ϕ being read "all executions of α
from the current state lead to a state where ϕ holds". The set of modal operators
is inductively extended by some compound constructs: composition (α ; β) of
programs α and β corresponds to the composition of the accessibility relations
R(α) and R(β); test ϕ? on formula φ corresponds to the partial identity relation
in the subsets of the Kripke models in which the formula ϕ is true; iteration α?

corresponds to the reflexive and transitive closure of R(α). The problem with
PDL is that the states of the Kripke models in which formulas are evaluated
have no internal structure.

The logics of Boolean bunched implications (BBI) extend the classical propo-
sitional logic by adding a multiplicative intuitionistic conjunction operator T,
formulas (ϕ T ψ) being read "the current state can be split into two states
respectively satisfying ϕ and ψ" and a multiplicative intuitionistic implication
operator −T, formulas (ϕ −T ψ) being read "if the current state is combined with
a state satisfying ϕ, then the resulting state satisfies ψ" [15]. This logic can be
viewed as a modal logic with two related binary modalities. In the corresponding
Kripke semantic, frames have a ternary relation C, x C (y, z) denoting both that
x can be split into y and z and that y and z can be combined to produce x.
BBI is semidecidable [8, 12] and undecidable [13, 6]. It forms the base ground for
separations logics [16], some of them being decidable. One of the most significant
application of separation logics, proposed by O’Hearn and Brookes [14, 5], con-
sists in a Hoare-style logic for the verification of concurent programs with shared
ressources. It would be interesting to have a dynamic logic related to O’Hearn
and Brookes’s logic as PDL is related to Hoare’s logic.

sofronie
Typewritten Text
31

The propositional dynamic logic with storing, recovering and parallel com-
position (PRSPDL), introduced by Benevides and al. [3], extends the syntax of
PDL by adding the storing programs s1 and s2, the recovering programs r1 and
r2, and the parallel composition of programs binary operator ‖. In the corre-
sponding Kripke semantic, all these new constructs are interpreted by means of
a ternary operator C playing the same role as in BBI’s Kripke semantic. When-
ever x C (y, z), y is related to x by s1, z is related to x by s2 and x is related
to y and z by respectively r1 and r2. The parallel composition (α ‖ β) corre-
sponds to the fork R(α)∇R(β) of R(α) and R(β) defined as follows: whenever
w1 C (w2, w3), w6 C (w4, w5), w2 and w4 are related by R(α) and w3 and w5

by R(β), then w1 and w6 are related by R(α)∇R(β). A multiplicative conjonc-
tion similar to the one found in separation logics can be defined in PRSPDL by
(ϕ T ψ)

.
= 〈ϕ? ‖ ψ?〉>. Hence this logic is both a dynamic logic and a separation

logic. Unfortunately, PRSPDL has been proved to be highly undecidable [2].
The purpose of this paper is to present a decidable fragment of PRSPDL in

which the multiplicative conjunction is still definable. More precisely, we prove
that the satisfiability problem for this fragment is in NEXPTIME. The method
used is the classical selection of a finite model [4]. The main difficulty is that no
comprehensive set of subformulas can be expressed in the langage for a formula
of the form [α ‖ β]ϕ. This difficulty is overcome by adding placeholders on the
syntactic side and markers on the semantic side.

The next section presents the language and the semantic of the studied frag-
ment. Section 3 adapts the usual unfolding model operation [4] to the studied
frame. Section 4 presents the placeholders and markers. Section 5 proves decid-
abilty of the fragment, giving a complexity upper bound.

2 Language and Semantic

We consider the fragment PPDLdet
0 of PRSPDL without program iterations and

the special programs r1, r2, s1, s2. This corresponds to the iteration-free PDL
language with sequential compositions, tests and parallel compositions. Formaly,
the language of PPDLdet

0 is defined as follows.
Let Φ0 be a set of propositional variables and Π0 a countable set of atomic

program variables. The sets Φ and Π of formulas and programs are languages
over the alphabet of symbols Φ0 ∪Π0 ∪ {;, ?, ‖,⊥, [,], (,)} defined by:

α, β := a | (α ; β) | φ? | (α ‖ β)
ϕ := p | ⊥ | [α]ϕ

where p range over Φ0, a over Π0, ϕ over Φ and α and β over Π.
The usual common operators like implication and diamond can easily be

defined, respectively by ϕ → ψ
.
= [ϕ?]ψ and 〈α〉ϕ .

= [[α ; ϕ?]⊥?]⊥. Moreover,
the multiplicative conjunction related to BBI may be defined by ϕ T ψ

.
= [[ϕ? ‖

ψ?]⊥?]⊥. Althought these operators may be usefull in applications, they are not
needed here and for the sake of simplicity, they will not be used in the remaining
of the paper.

sofronie
Typewritten Text
32

A model is a tuple M = (W,R,C, V) where W is a non-empty set of
worlds, R : Π0 −→ P

(
W 2
)
is a function from atomic programs to correspond-

ing accessibility relations, C ⊆ W 3 is the separation relation and V : Φ0 −→
P (W) is the valuation function. The language Φ is interpreted over C-separated
C-deterministic models, i.e. models such that ∀w,w1, w2, v, v1, v2 ∈W :

w C (w1, w2) ∧ w C (v1, v2)⇒ w1 = v1 ∧ w2 = v2 (C-separated)
w C (w1, w2) ∧ v C (w1, w2)⇒ w = v (C-deterministic)

The forcing relation � is defined by parallel induction along with the exten-
sion of R to all programs:

M, w � p iff w ∈ V (p)

M, w � ⊥ never
M, w � [α]ϕ iff ∀w′, wR(α)w′ ⇒M, w′ � ϕ

w R(α ; β) w′ iff ∃w′′, wR(α)w′′ ∧ w′′R(β)w′

w R(ϕ?) w′ iff w = w′ ∧M, w � ϕ

w R(α ‖ β) w′ iff ∃w1, w2, w3, w4,

w C (w1, w2) ∧ w1R(α)w3 ∧ w2R(β)w4 ∧ w′ C (w3, w4)

As usual, a formula ϕ ∈ Φ is said to be satisfiable iff there exists a modelM
and a world w such thatM, w � ϕ.

In order to ease inductive reasoning about this logic, the length of both
formulas and programs is defined.

Definition 1 (Length). The lengths |ϕ| ∈ N and |α| ∈ N of each formula
ϕ ∈ Φ and each program α ∈ Π is inductively defined as:

|p| = 0

|⊥| = 0

|[α]ϕ| = |α|+ |ϕ|

|a| = 1

|α ; β| = |α|+ |β|+ 1

|ϕ?| = |ϕ|+ 1

|α ‖ β| = |α|+ |β|+ 1

Lemma 1. The length of any formula ϕ ∈ Φ is bounded by the number of oc-
curences of symbols in ϕ.

Proof. We prove simultaneously the corresponding property for programs: the
length of any program α ∈ Π is bounded by the number of occurences of symbols
in α. The proof is by parallel induction on the number of occurences of symbols
in ϕ and α respectively and is left to the reader. ut
Definition 2 (Size). The size size(α) of any program α ∈ Π is inductively
defined as:

size(a) = 1

size(ϕ?) = 0

size(α ; β) = sizeα+ sizeβ

size(α ‖ β) = sizeα+ sizeβ

sofronie
Typewritten Text
33

Lemma 2. For all α ∈ Π, size(α) ≤ |α|.

Proof. By induction on the number of occurences of symbols in α, left to the
reader. ut

Lemma 3. Given any C-deterministic modelM = (W,R,C, V), for all α ∈ Π
and w, v ∈W , if wR(α)v and size(α) = 0, then w = v.

Proof. By induction on the length of α. The cases for atomic programs and tests
are trivial. For sequential composition, the property holds by induction. Let
suppose wR(α ‖ β)v and size(α ‖ β) = 0. Then there exists w1, w2, w3, w4 ∈ W
such that w C (w1, w2), w1R(α)w3, w2R(β)w4 and v C (w3, w4). By induction,
w1 = w3 and w2 = w4. SinceM is C-deterministic, w = v. ut

3 Model Unfolding

Definition 3 (Bounded morphism). Given two C-separated C-deterministic
modelsM = (W,R,C, V) andM′ = (W ′, R′,C′, V ′), a mapping f :M−→M′

is called a bounded morphism iff it satisfies the following conditions for all
v, w,w1, w2 ∈W , w′, w′

1, w
′
2 ∈W ′ and a ∈ Π0:

w and f(w) satisfy the same propositional variables (1)
vR(a)w ⇒ f(v)R′(a)f(w) (2)

f(v)R′(a)w′ ⇒ ∃w, f(w) = w′ and vR(a)w (3)
w C (w1, w2)⇒ f(w) C′ (f(w1), f(w2)) (4)

f(w) C′ (w′
1, w

′
2)⇒ ∃w1, w2, f(w1) = w′

1, f(w2) = w′
2 and w C (w1, w2)

(5)

w′ C′ (f(w1), f(w2))⇒ ∃w, f(w) = w′ and w C (w1, w2) (6)

Proposition 1. If f is a bounded morphism fromM toM′, then for all w ∈W
and ϕ ∈ Φ,M, w � ϕ iffM′, f(w) � ϕ.

Proof. By simultaneous induction on the length of both ϕ ∈ Φ and α ∈ Π, the
following properties can be proved:

M, w � ϕ⇔M′, f(w) � ϕ

vR(α)w ⇒ f(v)R′(α)f(w)

f(v)R′(α)w′ ⇒ ∃w, f(w) = w′ and vR(α)w ut

Given a C-separated C-deterministic countable modelM′ = (W ′, R′,C′, V ′)
and a world w′

0 ∈ W ′, we will construct the unfolding of M′ at w′
0 as follows.

Let W∞ be a countably infinite set. For all k ∈ N we will construct the tuple
Tk = (Wk, Rk,Ck, hk, dk, pk) such that Wk ⊆ W∞, Mk = (Wk, Rk,Ck, Vk) is
a model, hk : Wk −→ W ′ is a function satisfying the conditions (2) and (4) of
Definition 3, dk :Wk −→ Q gives the degree of worlds in Wk and pk :Wk −→ Z
gives the depth of worlds in Wk.

sofronie
Typewritten Text

sofronie
Typewritten Text
34

We define the following defects:

1. A tuple (v, a, w′) ∈ W∞ ×Π0 ×W ′ is a defect of type 1 for Tk iff v ∈ Wk,
hk(v)R

′(a)w′ and ∀w ∈Wk, hk(w) = w′ implies (v, w) /∈ Rk(a);
2. A tuple (v, w′

1, w
′
2) ∈W∞ ×W ′ ×W ′ is a defect of type 2 for Tk iff v ∈Wk,

hk(v) C′ (w′
1, w

′
2) and ∀w1, w2 ∈ Wk, hk(w1) = w′

1 ∧ hk(w2) = w′
2 implies

(v, w1, w2) /∈Ck;
3. A tuple (w′, w1, w2) ∈ W ′ × W∞ × W∞ is a defect of type 3 for Tk iff
w1, w2 ∈ Wk, w′ C′ (hk(w1), hk(w2)) and ∀w ∈ Wk, hk(w) = w′ implies
(w,w1, w2) /∈Ck.

As all sets W∞,W
′ and Π0 are countable, there exists an enumeration δ0, δ1 . . .

of tuples belonging to (W∞×Π0×W ′)∪ (W∞×W ′×W ′)∪ (W ′×W∞×W∞)
where each tuple appears infinitely often.

As a first step, let w0 ∈ W∞, W0 = {w0}, R0(a) = ∅ for all a ∈ Π0, C0= ∅,
h0(w0) = w′

0, d0(w0) = 0 and p0(w0) = 0.
Next, given the k-tuple Tk, if δk is not a defect for Tk then Tk+1 = Tk.

Otherwise, depending on the type of δk one of the following rule is applied.

1. When δk is of type 1, let δk = (v, a, w′) and w+ be a fresh element from W∞

Wk+1 =Wk ∪ {w+}
Rk+1(a) = Rk(a) ∪ {(v, w+)}
Rk+1(b) = Rk(b) for all b 6= a

Ck+1 =Ck

hk+1(w) =

{
w′ if w = w+

hk(w) otherwise

dk+1(w) =

{
dk(v) + 1 if w = w+

dk(w) otherwise

pk+1(w) =

{
pk(v) if w = w+

pk(w) otherwise

2. When δk is of type 2, let δk = (v, w′
1, w

′
2) and w

+
1 and w+

2 be fresh elements
from W∞

Wk+1 =Wk ∪ {w+
1 , w

+
2 }

Rk+1(a) = Rk(a) for all a

Ck+1 =Ck ∪{(v, w+
1 , w

+
2)}

hk+1(w) =


w′

1 if w = w+
1

w′
2 if w = w+

2

hk(w) otherwise

dk+1(w) =

{
1
2dk(v) if w ∈ {w+

1 , w
+
2 }

dk(w) otherwise

pk+1(w) =

{
pk(v) + 1 if w ∈ {w+

1 , w
+
2 }

pk(w) otherwise

sofronie
Typewritten Text
35

3. When δk is of type 3, let δk = (w′, w1, w2) and w+ be a fresh element from
W∞

Wk+1 =Wk ∪ {w+}
Rk+1(a) = Rk(a) for all a

Ck+1 =Ck ∪{(w+, w1, w2)}

hk+1(w) =

{
w′ if w = w+

hk(w) otherwise

dk+1(w) =

{
dk(w1) + dk(w2) if w = w+

dk(w) otherwise

pk+1(w) =


pk(w1)− 1 if w = w+ and pk(w1) = pk(w2)

−1 if w = w+ and pk(w1) 6= pk(w2)

pk(w) otherwise

Then let W , R and C be the union of respectively Wk, Rk and Ck on all
k ∈ N. We further define the functions h(w) = hkw(w), d(w) = dkw(w) and
p(w) = pkw

(w) for all w ∈W , kw being the smallest k such that w ∈Wk. Finaly,
let V (p) = {w ∈W | h(w) ∈ V ′(p)} for all p ∈ Φ0. The modelM = (W,R,C, V)
is the unfolding of M′ at w′

0. The initial world w0 is called the root of the
unfolding.

Lemma 4. For all w, v, w1, w2 ∈ W , k ∈ N, a ∈ Π0, w′ ∈ W ′, r ∈ Q and
z ∈ Z, the following implications hold:

w ∈Wk ⇒ w ∈Wk+1 (7)
vRk(a)w ⇒ vRk+1(a)w (8)

w Ck (w1, w2)⇒ w Ck+1 (w1, w2) (9)
hk(w) = w′ ⇒ hk+1(w) = w′ (10)
dk(w) = r ⇒ dk+1(w) = r (11)
pk(w) = z ⇒ pk+1(w) = z (12)

Proof. Each implication is easily checked for each type of the defect δk. ut

Lemma 5. The modelM is C-separated and C-deterministic.

Proof. It suffices to check that for all k ∈ N, the model (Wk, Rk,Ck, V �Wk
) is

C-separated and C-deterministic, which is left to the reader. ut

Lemma 6. The map h is a bounded morphism fromM toM′.

Proof. Condition (1) holds by definition of V . The fact that for all k ∈ N, hk
satisfies the conditions (2) and (4) is easily checked. Hence the map h satisfies
the conditions (2) and (4). By our step-by-step construction, it also satisfies the
conditions (3), (5) and (6). ut

Moreover, the degree d and the depth p as constructed above have the fol-
lowings properties which will be useful in the next sections.

sofronie
Typewritten Text
36

Property 1. For all w,w1, w2 ∈W , if w C (w1, w2) then d(w) = d(w1)+d(w2).

Proof. Each tuple (w,w1, w2) ∈C has been added by case 2 or 3 and in both
cases the property holds. ut

Property 2. For all v, w ∈ W and α ∈ Π, if vR(α)w then d(w) = d(v) +
size(α).

Proof. The proof is by induction on the length of α, left to the reader. ut

Property 3. For all w,w1, w2 ∈W , if w C (w1, w2) and p(w) ≥ 0 then p(w1) =
p(w2) = p(w) + 1.

Proof. Each tuple (w,w1, w2) ∈C has been added by case 2 or 3. The former
case is trivial. In the latter case, as p(w) 6= −1, the property holds too. ut

Property 4. For all v, w ∈ W and α ∈ Π, if vR(α)w and p(v) ≥ 0 then
p(v) = p(w).

Proof. By induction on the length of α, left to the reader. ut

4 Placeholders and Markers

4.1 Subformulas with Placeholders

Using the same sets Φ0 and Π0 of propositional variables and atomic programs
as before, the sets Φ+ and Π+ of formulas and programs with indices and place-
holders are defined by parallel induction:

α, β := a | (α ; β) | ϕ? | (α ‖i β)
ϕ := p | (i, j) | ⊥ | [α]ϕ

where p range over Φ0, a over Π0, i over N, j over {1, 2}, ϕ over Φ+ and α and β
over Π+. The integers below the parallel composition symbols are called indices.
The atomic formulas of the form (i, j) are called placeholders. The definitions
of lengths and size of Section 2 are extended to Φ+ and Π+ by considering
placeholders as new propositional variables and ignoring indices.

A formula ϕ ∈ Φ+ with indices and placeholders is an annotated formula
with placeholders if each integer appears at most once as an index in it. The
subset ΦPH ⊂ Φ+ of all annotated formula with placeholders is called the an-
notated language with placeholders, and ΠPH is the corresponding set of anno-
tated programs with placeholders. For each annotated formula with placeholders
ϕ ∈ ΦPH , Iϕ ⊆ N denotes the set of indices appearing in ϕ.

An annotated formula with placeholders ϕ ∈ ΦPH is a pure annotated formula
if it contains no placeholders. The subset ΦN ⊂ ΦPH of all pure annotated
formula is called the pure annotated language, and ΠN is the corresponding set
of pure annotated programs. There exists a forgetful epimorphism · : ΦN −→ Φ
associating to each pure annotated formula ϕN the formula ϕN obtained by
removing all indices in ϕN. ϕN is called the unannotated formula of ϕN and
ϕN an annotation of ϕN.

sofronie
Typewritten Text
37

Definition 4 (Subformulas with placeholders). The function sf : N× N×
ΦPH −→ P (N× N× ΦPH) is inductively defined by:

sf (d, p, q) = {(d, p, q)} for all q ∈ Φ0

sf (d, p, (i, j)) = {(d, p, (i, j))} for all (i, j) ∈ N× {1, 2}
sf (d, p,⊥) = {(d, p,⊥)}

sf (d, p, [a]ϕ) = {(d, p, [a]ϕ)} ∪ sf(d+ 1, p, ϕ)

sf (d, p, [ϕ?]ψ) = {(d, p, [ϕ?]ψ)} ∪ sf(d, p, ϕ) ∪ sf(d, p, ψ)

sf (d, p, [α ; β]ϕ) = {(d, p, [α ; β]ϕ)} ∪ sf(d, p, [α][β]ϕ)

sf (d, p, [α ‖i β]ϕ) = {(d, p, [α ‖i β]ϕ)} ∪ sf(d, p+ 1, [α](i, 1))∪
sf(d, p+ 1, [β](i, 2)) ∪ sf(d+ size(α ‖ β), p, ϕ)

For all pure annotated formula ϕ ∈ ΦN and (d, p, ψ) ∈ sf(0, 0, ϕ), ψ is called
a subformula with placeholders of ϕ of degree d and depth p. The set of all
subformulas with placeholders of ϕ is denoted by SF(ϕ).

Lemma 7. For all d1, d2, p1, p2 ∈ N and all ϕ1, ϕ2 ∈ ΦPH :

(d1, p1, ϕ1) ∈ sf(d2, p2, ϕ2)⇔ sf(d1, p1, ϕ1) ⊆ sf(d2, p2, ϕ2)

Proof. The right to left direction is trivial. The left to right direction is by
induction on |ϕ2|. When ϕ2 ∈ Φ0 ∪ (N × {1, 2}) or ϕ2 = ⊥, sf(d2, p2, ϕ2)
is a singleton hence (d1, p1, ϕ1) = (d2, p2, ϕ2). When ϕ2 = [a]ϕ then either
(d1, p1, ϕ1) = (d2, p2, ϕ2) or (d1, p1, ϕ1) ∈ sf(d2 + 1, p2, ϕ) and by induction
sf(d1, p1, ϕ1) ⊆ sf(d2+1, p2, ϕ) ⊆ sf(d2, p2, ϕ2). The others cases are similar and
left to the reader. ut

Corollary 1. For all d, p, i ∈ N, α, β ∈ ΠPH and ϕ,ψ, ϕ0 ∈ ΦPH ,

(d, p, [ϕ?]ψ) ∈ sf(0, 0, ϕ0)⇒ (d, p, ϕ) ∈ sf(0, 0, ϕ0) (13)
(d, p, [α ; β]ϕ) ∈ sf(0, 0, ϕ0)⇒ (d, p, [α][β]ϕ) ∈ sf(0, 0, ϕ0) (14)

(d, p, [α ‖i β]ϕ) ∈ sf(0, 0, ϕ0)⇒ (d, p+ 1, [α](i, 1)) ∈ sf(0, 0, ϕ0) (15)
(d, p, [α ‖i β]ϕ) ∈ sf(0, 0, ϕ0)⇒ (d, p+ 1, [β](i, 2)) ∈ sf(0, 0, ϕ0) (16)

Proof. The proof is given for (14) only. The other implications are similar and
left to the reader. By Lemma 7, (d, p, [α ; β]ϕ) ∈ sf(0, 0, ϕ0) ⇒ sf(d, p, [α ;
β]ϕ) ⊆ sf(0, 0, ϕ0). By construction, sf(d, p, [α][β]ϕ) ⊆ sf(d, p, [α ; β]ϕ). And by
Lemma 7 again, (d, p, [α][β]ϕ) ∈ sf(d, p, [α ; β]ϕ). ut

Lemma 8. For all d, p ∈ N, α ∈ ΠPH and ϕ,ψ ∈ ΦPH , if (d, p, [α]ϕ) ∈
sf(0, 0, ψ) then (d+ size(α), p, ϕ) ∈ sf(0, 0, ψ).

Proof. The proof is by induction on the length of α. Each case is similar to the
proof of Corollary 1, using Lemma 7 twice. They are all left to the reader. ut

Lemma 9. For all pure annotated formula ϕ ∈ ΦN, the cardinality of sf(0, 0, ϕ)
is linear in the number of occurences of symbols in the unannotated formula ϕ.

sofronie
Typewritten Text
38

Proof. A value is assigned to each symbol in any annotated formula with place-
holders: 3 for ‖; 1 for propositional variables, commas, ⊥, atomic programs,
semicolons and question marks; 0 for anything else (braces, parentheses and in-
tegers). For all annotated formula with placeholders ϕ ∈ ΦPH , let L(ϕ) be the
sum of those values for each occurence of symbols in ϕ. Obviously, for all pure
annotated formula ϕ ∈ ΦN, L(ϕ) is less or equal to three times the number of
occurences of symbols in the unannotated formula ϕ. Moreover, it can be easily
proved by induction on L(ϕ), that for all d, p ∈ N and all annotated formula
with placeholders ϕ ∈ ΦPH , the cardinality of sf(d, p, ϕ) is equal to L(ϕ). ut

Lemma 10. For all d, p ∈ N, ϕ ∈ ΦN and (d′, p′, ϕ′) ∈ sf(d, p, ϕ):

d′ ≤ d+ |ϕ| (17)
p′ ≤ p+ |ϕ| (18)

Proof. The proof is by induction on |ϕ|. The base cases, for propositional vari-
ables, placeholders and ⊥, are trivial. If (d′, p′, ϕ′) ∈ sf(d, p, [a]ϕ), then ei-
ther (d′, p′, ϕ′) = (d, p, [a]ϕ) or (d′, p′, ϕ′) ∈ sf(d + 1, p, ϕ) and by induction
d′ ≤ d+1+ |ϕ| = d+ |[a]ϕ| and p′ ≤ p+ |ϕ| ≤ p+ |[a]ϕ|. For tests and sequential
compositions, the proof is direct by induction and left to the reader.

If (d′, p′, ϕ′) ∈ sf (d, p, [α ‖i β]ϕ), then either (d′, p′, ϕ′) = (d, p, [α ‖i β]ϕ) or
one of the following holds:

(d′, p′, ϕ′) ∈ sf(d, p+ 1, [α](i, 1)) (19)
(d′, p′, ϕ′) ∈ sf(d, p+ 1, [β](i, 2)) (20)
(d′, p′, ϕ′) ∈ sf(d+ size (α ‖i β) , p, ϕ) (21)

If (19) holds, as |[α](i, 1)| < |[α ‖i β]ϕ| = |α| + 1 + |β| + |ϕ|, properties (17)
and (18) are verified by induction. The proof is identical if (20) holds. If (21)
holds, by induction, d′ ≤ d+size (α ‖i β)+ |ϕ| and p′ ≤ p+ |ϕ| < p+ |[α ‖i β]ϕ|.
And by Lemma 2, size (α ‖i β) + |ϕ| ≤ |[α ‖i β]ϕ|. ut

Definition 5 (Annotated subprograms). Given a pure annotated formula
ϕ0 ∈ ΦN, the set SP (ϕ0) of ϕ0’s annotated subprograms is defined as

SP (ϕ0) = {α ∈ ΠPH | ∃ϕ ∈ ΦPH , [α]ϕ ∈ SF(ϕ0)}

Lemma 11. No placeholders appear in any annotated subprogram.

Proof. Let ΦS be the smallest language containing ⊥, all propositional variables
and placeholders from ΦPH and such that for all α ∈ ΠN and ϕ ∈ ΦS , [α]ϕ ∈ ΦS .
Obviously, ΦN ⊂ ΦS ⊂ ΦPH . By induction on |ϕ|, the following property can be
easily proved:

∀ϕ ∈ ΦS ,∀d, p ∈ N,∀(d′, p′, ψ) ∈ sf(d, p, ϕ), ψ ∈ ΦS

Therefore, for all [α]ϕ ∈ SF(ϕ0), α ∈ ΠN. ut

sofronie
Typewritten Text
39

4.2 Model extension with Markers

LetM = (W,R,C, V) be a model on Φ. The sets Φ+
M and Π+

M of formulas and
programs with indices and markers fromM are defined by parallel induction:

α, β := a | (α ; β) | ϕ? | (α ‖i β)
ϕ := p | w | ⊥ | [α]ϕ

where p range over Φ0, a overΠ0, i over N, w overW, ϕ over Φ+
M and α and β over

Π+
M. The atomic formulas belonging to W are called markers. The definitions

of lengths and size of Section 2 are extended to Φ+
M and Π+

M by considering
markers as new propositional variables and ignoring indices.

A formula ϕ ∈ Φ+
M is an annotated formula with markers from M if each

integer appears at most once as index in it. The subset ΦM ⊂ Φ+
M of all an-

notated formula with markers from M is called the annotated language with
markers fromM, and ΠM is the corresponding set of annotated programs with
markers from M. A formula ϕ ∈ ΦM is pure iff it contains no markers. It is
worth noting that the subset of pure formulas from ΦM is the language of pure
annotated formula ΦN.

The extension ofM with markers is the modelM+ = (W,R,C, V +) on the
language ΦM with the new valuation V + defined as follows:

V +(p) = V (p) if p ∈ Φ0

V +(w) =W \ {w} if w ∈W

Lemma 12. For all ϕ ∈ ΦM, if ϕ is pure then for all w ∈ W , M, w � ϕ ⇔
M+, w � ϕ.

Proof. By induction on ϕ, left to the reader.

Definition 6. Given a pure annotated formula ϕ ∈ ΦN and a model M =
(W,R,C, V), a binding for ϕ onM is a partial function m : Iϕ×{1, 2} −−⇀W .
The set of all such bindings is denoted by BM

ϕ .

Given a pure annotated formula ϕ0 ∈ ΦN, a model M = (W,R,C, V) and
a binding m ∈ BM

ϕ0
, the partial function Fϕ0,M,m : SF(ϕ0) −−⇀ ΦM is defined

inductively by:

Fϕ0,M,m(p) = p if p ∈ Φ0

Fϕ0,M,m(⊥) = ⊥
Fϕ0,M,m((i, k)) = m(i, k) if m(i, k) is defined
Fϕ0,M,m([α]ϕ) = [α]Fϕ0,M,m(ϕ) if Fϕ0,M,m(ϕ) is defined
Fϕ0,M,m(ϕ) is undefined otherwise

When it does not lead to confusion we will write Fm instead of Fϕ0,M,m.

sofronie
Typewritten Text
40

Procedure 1: Selection of a finite submodel
Input: An annotated formula ϕa ∈ ΦMu satisfiable inM at wu ∈W ; a

function E :W ×BMu
ϕa
−→ P (ΦMu).

Result: S a tree with nodes belonging to W ×BMu
ϕa

.
1 initialisation
2 S = the one (unmarked) node tree {(wu, ∅)}
3 while some nodes in S are not marked do
4 choose an unmarked node (w,m) from S
5 mark (w,m)
6 foreach [a]ϕ ∈ E(w,m) s.t. M, w 2 [a]ϕ do
7 choose w′ s.t. wR(a)w′ andM, w′ 2 ϕ
8 add (w′,m) as (w,m)’s child in S
9 foreach [α ‖i β]ϕ ∈ E(w,m) s.t. M, w 2 [α ‖i β]ϕ do

10 choose w1, w2, w3, w4, w5 s.t.
11 w C (w1, w2) ∧ w1R(α)w3 ∧ w2R(β)w4 ∧ w5 C (w3, w4) ∧M, w5 2 ϕ
12 add (w1,m] {((i, 1), w3)}) as (w,m)’s child in S
13 add (w2,m] {((i, 2), w4)}) as (w,m)’s child in S
14 if w5 6= w then
15 add (w5,m) as (w,m)’s child in S

5 Finite Model Property by Selection

Let us consider a formula ϕ0 ∈ Φ. If ϕ0 is satisfiable, thanks to the Löwenheim-
Skolem theorem, there exists a countable model M0 = (W0, R0,C0, V0) and
a world w0 ∈ W0 such that M0, w0 � ϕ0. Let Mu = (Wu, Ru,Cu, Vu) be
the unfolding of M0 at w0 with root wu, degree d : Wu −→ Q and depth
p : Wu −→ Z as defined in Section 3. Let M = (W,R,C, V) be the extension
with markers ofMu. As W =Wu, degree and depth apply to worlds ofM too.
Let ϕa ∈ ΦN be an annotation of ϕ0. As ϕa is pure, by Lemma 12,M, wu � ϕa.

Procedure 1 constructs a tree S whose nodes are tuples from W ×BMu
ϕa

. The
function E : W × BMu

ϕa
−→ P (ΦMu

) associates to each node from S the set of
ϕa’s annotated subformulas with markers which have to be considered to add
children to this node. It is defined as:

E(w,m) = {Fm(ϕ) | ∃d′, p′, (d′, p′, ϕ) ∈ sf(0, 0, ϕa) ∧ d(w) ≤ d′ ∧ p(w) = p′}

Lemma 13. For all (w,m) ∈ S, p(w) ≥ 0.

Proof. The proof is by induction on S: the root’s depth is 0 and for each child
(w′,m′) of (w,m), if p(w) ≥ 0 then p(w′) ≥ 0. If (w′,m′) has been added at
line 8, then wR(a)w′ and by Property 4, p(w′) = p(w). The proof is identical if
(w′,m′) has been added at line 15. If (w′,m′) has been added at line 12, there
exists w2 ∈W such that w C (w′, w2) and by Property 3, p(w′) = p(w)+1. The
proof is identical if (w′,m′) has been added at line 13. ut

Lemma 14. The size of S is bounded by an exponential in the number of oc-
curences of symbols in ϕ0.

sofronie
Typewritten Text
41

Proof. The vertex degree of S is bounded by the cardinality of sf(0, 0, ϕa) mul-
tiplied by three. Lemma 9 proved the cardinality of sf(0, 0, ϕa) is linear in the
number of occurences of symbols in ϕ0. The remaining of the proof is devoted to
demonstrate the length of the path from the root (wu, ∅) to any leaf is bounded
by a quadratic function on the number of occurences of symbols in ϕ0.

We first define the following maximal elements:

dmax = max {d ∈ N | ∃p, ϕ, (d, p, ϕ) ∈ sf(0, 0, ϕa)}
pmax = max {p ∈ N | ∃d, ϕ, (d, p, ϕ) ∈ sf(0, 0, ϕa)}

Clearly, if d(w) > dmax or p(w) > pmax for a given node (w,m) ∈ S, then
E(w,m) = ∅ and (w,m, t) has no children in S. Moreover, by Lemmas 10 and 1,
both dmax and pmax are less or equal than the number of occurences of symbols
in ϕ0.

We define the function f : S −→ Q by:

f(w,m) = (dmax + 1).p(w) + d(w)

Obviously, if f(w,m) ≥ (dmax + 1)(pmax + 1) for a given node (w,m) ∈ S, then
this node has no children in S. We will prove that for any child (w′,m′) of (w,m)
in S, f(w′,m′) ≥ f(w,m) + 1.

If (w′,m′) has been added as (w,m)’s child at line 8, then wR(a)w′ and by
Lemma 13 and Properties 2 and 4, d(w′) = d(w) + 1 and p(w′) = p(w). Hence
f(w′,m′) = f(w,m) + 1.

If (w′,m′) has been added as (w,m)’s child at line 12, then ∃w2 ∈W such that
w C (w′, w2). By Lemma 13 and Property 3, p(w′) = p(w)+ 1, thus f(w′,m′) ≥
(dmax + 1).p(w) + dmax + 1. And since (w,m) has children, d(w) ≤ dmax. The
proof is identical if (w′,m′) has been added at line 13.

If (w′,m′) has been added as (w,m)’s child at line 15, then wR (α ‖i β)w′ and
by Lemma 13 and Properties 2 and 4, d(w′) = d(w) + size (α ‖i β) and p(w′) =
p(w), hence f(w′,m′) = f(w,m) + size (α ‖i β). Moreover, size (α ‖i β) ≥ 1
because otherwise, by Lemmas 3 and 5, w′ = w which is impossible by the
condition at line 14. ut

From the tree S produced by Procedure 1, the modelMf = (Wf , Rf ,Cf , Vf)
is defined withWf being the subset {w ∈W | ∃m, (w,m) ∈ S} and Rf , Cf and
V the restriction of R, C and V to Wf . Obviously,Mf is finite and wu ∈ Wf .
Let E+(w) =

⋃
m | (w,m)∈S E(w,m) for all w ∈Wf .

Lemma 15. The modelMf is C-separated and C-deterministic.

Proof. By Lemma 5, Mu is C-separated and C-deterministic. Since both this
conditions are universal andMf is a submodel ofMu,Mf is C-separated and
C-deterministic. ut
Lemma 16 (Truth lemma). ∀w ∈Wf :

∀ϕ ∈ E+(w), ϕ pure, M, w � ϕ⇒Mf , w � ϕ (22)

∀ϕ ∈ E+(w), M, w � ϕ⇐Mf , w � ϕ (23)
∀v ∈Wf ,∀(d′, p(v), [α]ϕ) ∈ sf(0, 0, ϕa), d(v) ≤ d′, vR(α)w ⇐ vRf (α)w (24)

sofronie
Typewritten Text
42

Proof. The proof is by parallel induction on the length of ϕ for (22) and (23)
and on the length of α for (24).

Hypothesis (22). The base cases for ⊥ and propositional variables are trivial.
SupposeM, w � [a]ϕ, [a]ϕ ∈ E+(w), [a]ϕ is pure and wRf (a)v. Then there

exists d′ and p′ such that (d′, p′, [a]ϕ) ∈ sf(0, 0, ϕa), d(w) ≤ d′ and p(w) = p′. By
hypothesis (24), wR(a)v and hence M, v � ϕ. By Property 2, d(v) = d(w) + 1
and by Lemma 13 and Property 4, p(v) = p(w). By Lemma 8, (d′ + 1, p′, ϕ) ∈
sf(0, 0, ϕa). As d(v) ≤ d′ + 1, p(v) = p′ and ϕ is pure, ϕ ∈ E+(v). By induction,
Mf , v � ϕ.

SupposeM, w � [α ; β]ϕ, [α ; β]ϕ ∈ E+(w) and [α ; β]ϕ is pure. Then there
exists d′ ≥ d(w) such that (d′, p(w), [α ; β]ϕ) ∈ sf(0, 0, ϕa). By Corollary 1,
(d′, p(w), [α][β]ϕ) ∈ sf(0, 0, ϕa) and thus [α][β]ϕ ∈ E+(ϕa). Since |[α][β]ϕ| <
|[α ; β]ϕ| andM, w � [α][β]ϕ, by induction,Mf , w � [α][β]ϕ.

SupposeM, w � [ϕ?]ψ, [ϕ?]ψ ∈ E+(w) and [ϕ?]ψ is pure. Then there exists
d′ ≥ d(w) such that (d′, p(w), [ϕ?]ψ) ∈ sf(0, 0, ϕa). By Corollary 1 and Lemma 8
(d′, p(w), ϕ) and (d′, p(w), ψ) belong to sf(0, 0, ϕa). Thus ϕ and ψ belong to
E+(w). IfM, w 2 ϕ then by induction hypothesis (23),Mf , w 2 ϕ. IfM, w � ψ,
by induction hypothesis (22),Mf , w � ψ.

SupposeM, w � [α ‖i β]ϕ, [α ‖i β]ϕ ∈ E+(w), wRf (α ‖i β) v and [α ‖i β]ϕ
is pure. Then there exists d′ ≥ d(w) such that (d′, p(w), [α ‖i β]ϕ) ∈ sf(0, 0, ϕa).
By hypothesis (24), wR (α ‖i β) v and henceM, w � ϕ. By Property 2, d(v) =
d(w)+size (α ‖i β) and by Lemma 13 and Property 4, p(v) = p(w). By Lemma 8,
(d′ + size (α ‖i β) , p(w), ϕ) ∈ sf(0, 0, ϕa). As d(v) ≤ d′ + size (α ‖i β), p(v) =
p(w) and ϕ is pure, ϕ ∈ E+(v). By induction,Mf , v � ϕ.

Hypothesis (23). The base cases for ⊥, propositional variables and markers are
trivial.

Suppose M, w 2 [a]ϕ and [a]ϕ ∈ E+(w). Then there exists (w,m) ∈ S
such that [a]ϕ ∈ E(w,m). By construction of S there exists w′ ∈ W such that
wR(a)w′,M, w′ 2 ϕ and (w′,m) ∈ S, thus wRf (a)w

′. Moreover, there exists ψ ∈
SF(ϕa) and d′ ≥ d(w) such that Fm(ψ) = ϕ and (d′, p(w), [a]ψ) ∈ sf(0, 0, ϕa).
By Lemma 8, (d′ + 1, p(w), ψ) ∈ sf(0, 0, ϕa) and by Lemma 13 and Properties 2
and 4, d(w′) = d(w) + 1 and p(w′) = p(w). Hence ϕ ∈ E+(w′) and by induction
Mf , w

′ 2 ϕ. ConsequentlyMf , w 2 [α]ϕ.
SupposeM, w 2 [α ; β]ϕ and [α ; β]ϕ ∈ E+(w). Then there exists (w,m) ∈

S, ψ ∈ SF(ϕa) and d′ ≥ d(w) such that Fm(ψ) = ϕ and (d′, p(w), [α ; β]ψ) ∈
sf(0, 0, ϕa). By Corollary 1, (d′, p(w), [α][β]ψ) ∈ sf(0, 0, ϕa). Thus [α][β]ψ ∈
E+(w) and by inductionMf , w 2 [α][β]ϕ.

Suppose M, w 2 [ϕ?]ψ and [ϕ?]ψ ∈ E+(w). Then both M, w � ϕ and
M, w 2 ψ hold. Therefore there exists (w,m) ∈ S, ψ′ ∈ SF(ϕa) and d′ ≥ d(w)
such that Fm(ψ′) = ψ and (d′, p(w), [ϕ?]ψ′) ∈ sf(0, 0, ϕa). By Corollary 1 and
Lemma 8, (d′, p(w), ϕ) and (d′, p(w), ψ′) both belong to sf(0, 0, ϕa). And by
induction hypothesis (22) and (23),Mf , w � ϕ andMf , w 2 ψ.

Suppose M, w 2 [α ‖i β]ϕ and [α ‖i β]ϕ ∈ E+(w). Then there exists ψ ∈
SF(ϕa), (w,m) ∈ S and d′ ≥ d(w) such that (d′, p(w), [α ‖i β]ψ) ∈ sf(0, 0, ϕa)

sofronie
Typewritten Text
43

and Fm(ψ) = ϕ. By construction, there exists w1, w2, w3, w4, w5 ∈ W such that
w C (w1, w2), w1R(α)w3, w2R(β)w4, w5 C (w3, w4), M, w5 2 ϕ, (w1,m1) ∈
S, (w2,m2) ∈ S and (w5,m) ∈ S, with m1 = m] {((i, 1), w3)} and m2 =
m]{((i, 2), w4)}. By Lemma 8, (d′ + size (α ‖i β) , p(w), ϕ) ∈ sf(0, 0, ϕa) and by
Lemma 13 and Properties 2 and 4, d(w5) = d(w) + size (α ‖i β) and p(w5) =
p(w), then by induction hypothesis (23),Mf , w5 2 ϕ. It remains to prove that
wRf (α ‖i β)w5. By Corollary 1, both (d′, p(w) + 1, [α](i, 1)) and (d′, p(w) +
1, [α](i, 2)) belong to sf(0, 0, ϕa). By Lemma 13 and Properties 1 and 3, d(w1) ≤
d(w), d(w2) ≤ d(w) and p(w1) = p(w2) = p(w)+1. Therefore [α]w3 ∈ E(w1,m1)
and [β]w4 ∈ E(w2,m2). Thus by induction hypothesis (23), w3 and w4 belongs
to Wf , w1Rf (α)w3 and w2Rf (β)w4. Therefore, wRf (α ‖i β)w5.

Hypothesis (24). The base case for atomic programs is trivial.
Suppose vRf (α ; β)w, (d′, p(v), [α ; β]ϕ) ∈ sf(0, 0, ϕa) and d′ ≥ d(v). Then

there exists w′ ∈ Wf such that vRf (α)w
′ and w′Rf (α)w. By Corollary 1,

(d′, p(v), [α][β]ϕ) ∈ sf(0, 0, ϕa). By induction hypothesis (24), vR(α)w′. Thanks
to Lemma 13 and Properties 2 and 4, d(w′) = d(v) + size(α) and p(w′) = p(v).
By Lemma 8, (d′ + size(α), p(v), [β]ϕ) ∈ sf(0, 0, ϕa) and by induction hypothe-
sis (24), w′R(β)w. Since vR(α)w′, vR(α ; β)w.

Suppose vRf (ψ?)w, (d′, p(v), [ψ?]ϕ) ∈ sf(0, 0, ϕa) and d′ ≥ d(v). Then w = v
and as ψ is pure by Lemma 11, Mf , v � ψ. By Corollary 1, (d′, p(v), ψ) ∈
sf(0, 0, ϕa). As |ψ?| > |ψ|, by induction hypothesis (23),M, v � ψ. Since v = w,
vR(ψ?)w.

Suppose vRf (α ‖i β)w, (d′, p(v), [α ‖i β]ϕ) ∈ sf(0, 0, ϕa) and d′ ≥ d(v).
Then there exists w1, w2, w3, w4 ∈ Wf such that v Cf (w1, w2), w1Rf (α)w3,
w2Rf (β)w4 and w Cf (w3, w4). Obviously, both v C (w1, w2) and w C (w3, w4)
hold. By Corollary 1, both (d′, p(v)+1, [α](i, 1)) and (d′, p(v)+1, [β](i, 2)) belong
to sf(0, 0, ϕa). By Lemma 13 and Properties 1 and 3, d(w1) ≤ d(v), d(w2) ≤ d(v)
and p(w1) = p(w2) = p(v) + 1. Thus, by induction hypothesis (24), w1R(α)w3

and w2R(β)w4. Then vR(α ‖i β)w. ut

Proposition 2. The satisfiability problem of PPDLdet
0 ’s formulas interpreted in

C-separated C-deterministic models is in NEXPTIME.

Proof. Lemmas 14, 15 and 16 prove that whenever a formula ϕ is satisfiable
in a C-separated C-deterministic model, ϕ is satisfiable in a C-deterministic
C-separated model with size exponential in the number of occurences of symbols.

6 Conclusion

We have proved the fragment PPDLdet
0 of PRSPDL is decidable, giving a NEXP-

TIME complexity upper bound. Because of the subtleties brought about by the
parallel composition, we have used placeholders and markers in the selection
procedure. We expect this technique could be reused to express subformulas in
other fragments of PRSPDL.

sofronie
Typewritten Text
44

Still, the exact complexity of PPDLdet
0 is unknown. The only known lower

bound is given by the straightforward embeding of the modal logic K, resulting
in PPDLdet

0 being PSPACE-hard [11].
Althought the C-separation condition is needed for the axiomatization of

PRSPDL0 [1], we believe this condition makes the satisfiability problem harder.
We conjecture the satisfiability problem of the same language interpreted on
C-deterministic models to be PSPACE-complete, leaving the proof as future
work.

References

1. Balbiani, P., Boudou, J.: Iteration-free PDL with storing, recovering and parallel
composition: a complete axiomatization, submitted

2. Balbiani, P., Tinchev, T.: Definability and computability for PRSPDL. In: Ad-
vances in Modal Logic (2014), to appear

3. Benevides, M.R.F., de Freitas, R.P., Viana, J.P.: Propositional dynamic logic with
storing, recovering and parallel composition. Electr. Notes Theor. Comput. Sci.
269, 95–107 (2011)

4. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic, Cambridge Tracts in The-
oretical Computer Science, vol. 53. Cambridge University Press (2001)

5. Brookes, S.: A semantics for concurrent separation logic. Theor. Comput. Sci.
375(1-3), 227–270 (2007)

6. Brotherston, J., Kanovich, M.I.: Undecidability of propositional separation logic
and its neighbours. In: LICS. pp. 130–139. IEEE Computer Society (2010)

7. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
Comput. Syst. Sci. 18(2), 194–211 (1979)

8. Galmiche, D., Larchey-Wendling, D.: Expressivity properties of boolean BI through
relational models. In: FSTTCS. Lecture Notes in Computer Science, vol. 4337, pp.
357–368. Springer Berlin Heidelberg (2006)

9. Goldblatt, R.: Logics of Time and Computation. Center for the Study of Language
and Information (1987)

10. Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. MIT press (2000)
11. Ladner, R.E.: The computational complexity of provability in systems of modal

propositional logic. SIAM J. Comput. 6(3), 467–480 (1977)
12. Larchey-Wendling, D., Galmiche, D.: Exploring the relation between Intuitionis-

tic BI and Boolean BI: an unexpected embedding. Mathematical Structures in
Computer Science 19(3), 435–500 (2009)

13. Larchey-Wendling, D., Galmiche, D.: The undecidability of boolean BI through
phase semantics. In: LICS. pp. 140–149. IEEE Computer Society (2010)

14. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput. Sci.
375(1-3), 271–307 (2007)

15. Pym, D.J.: The semantics and proof theory of the logic of bunched implications,
vol. 26. Springer (2002)

16. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS. pp. 55–74. IEEE Computer Society (2002)

sofronie
Typewritten Text
45

Axiomatic and Tableau-Based Reasoning for
Kt(H,R)

Renate A. Schmidt†, John G. Stell‡, and David Rydeheard†

†University of Manchester, UK
‡University of Leeds, UK

The context of this work is automated reasoning for modal logics. Here, we ex-
plore a variety of different deduction approaches in the spectrum between the
purely axiomatic approach and the explicitly semantic approach. Our investi-
gation is focussed on a propositional modal logic with non-trivial interactions
between the modalities. The logic, called Kt(H,R), has forward and backward
looking modal operators defined by two accessibility relations H and R. The
frame conditions are reflexivity and transitivity of H, and stability of R with
respect to H. The stability condition is defined as H ;R ;H ⊆ R, where ; denotes
relational composition. This means in a Kripke frame, for any two states u and v,
whenever there is an H-transition from u, followed by an R-transition and an
H-transition, to v, then there is also an R-transition from u to v.

The logic Kt(H,R) originates with recent work on a bi-intuitionistic tense
logic, called BISKT, which is studied with the motivation to develop a theory of
relations on graphs and applications to spatial reasoning [11]. Using the standard
embedding of intuitionistic logics into modal logic, BISKT can be embedded
into Kt(H,R) and properties such as decidability, the finite model property and
complexity of Kt(H,R) carry over to BISKT. Moreover, deduction methods for
Kt(H,R) and implementations can be used for BISKT.

Kt(H,R) is of independent interest because the modal axiom(s) correspond-
ing to the stability condition can be used to ascribe levels of awareness to agents
in a multi-agent setting. The standard model for formalising knowledge and ac-
tions performed by agents, or events happening in an agent environment, uses
the S5 -modality as knowledge operator and K -modalities as action operators.
In Kt(H,R), the [H]-modality and the [R]-modality can be seen as modelling
knowledge and action operators. (The formalisation is slightly more general, be-
cause the negative introspecion axiom is not assumed for the [H]-modality but
this is not critical because it can be easily added to the logic.) [H]φ is read
to mean ‘the agent knows φ’ and [R]φ is read to mean ‘always after executing
action R, φ holds’. In this context, the axiom

S = [R]φ→ [H][R][H]φ

corresponding to the stability condition H ;R ;H ⊆ R, can be viewed as saying
‘the agent knows that, after performing an action R, it knows the effects of the
action’. Thus, it states the agent has (strong) awareness of performing action R
and its effects.

The logic Kt(H,R) has an alternative axiomatisation in which the stability
axiom S is equivalent to the two axioms

sofronie
Typewritten Text
46

A = [R]φ→ [H][R]φ and P = [R]φ→ [R][H]φ.

From an agent perspective, Axiom A says ‘the agent knows, when action R
is performed, then φ necessarily holds’; in other words, the agent is aware of
action R. Axiom P says ‘after performing action R the agent knows φ holds’, i.e.,
it knows the post-condition has been realised. In some sense, Axioms A and P can
be viewed as weak forms of no learning and perfect recall. No learning is typically
formalised as [R][H]φ→ [H][R]φ, and perfect recall as [H][R]φ→ [R][H]φ.

A contribution of this work is a series of labelled semantic tableau calculi for
the logic Kt(H,R). Labelled semantic tableau calculi of the pure semantic kind
explicitly and directly construct Kripke models during the inference process.
They use structural rules which are direct reflections of the background theory
given by a set of characterising frame conditions. For example, for axiom

4 = [H]φ→ [H][H]φ

the structural rule is H(s, t), H(t, u) / H(s, u) and ensures H will be a tran-
sitive relation. Transitivity is the frame condition of Axiom 4. For logics with
semantic characterisations, labelled tableau calculi using structural rules may be
developed by systematic methods. A general method is described in [10, 12].

Alternatively, the background theory can be accommodated as propagation
rules [3]. The propagation rule for Axiom 4 is s : [H]φ, H(s, t) / t : [H]φ. Prop-
agation rules accommodate the background theory not by representations of the
frame conditions but by representations of inferences with the Hilbert axioms [6].
Propagation rules can be seen to attempt to speed up the inference process by
not returning complete concrete models but only skeleton models and performing
just enough inferences to determine both satisfiability and unsatisfiability.

We also explore the extreme case of basing the tableau rules of the back-
ground theory on direct representations of Hilbert axioms, e.g., using the rule
s : [H]φ / s : [H][H]φ for Axiom 4. This is an example of what we call an ax-
iomatic rule. Calculi with such rules are seldom seen in the literature, and some
authors have suggested completeness and termination cannot be guaranteed with
such rules. We show however complete and terminating tableau calculi based on
such rules can be obtained.

In total we present fifteen different tableau systems for Kt(H,R) which we
prove sound and complete. These emerge in systematic ways from the two ax-
iomatisations and corresponding semantic characterisations of the logic. Only in
one case a cut rule is needed when using propagation rules. For the Axioms A
and P , no cut is needed.

Each of the calculi is terminating when endowed with the unrestricted block-
ing mechanism. The unrestricted blocking mechanism is based on the use of the
following (ub) rule.

(ub)
s ≈ t | s 6≈ t

Adding the unrestricted blocking mechanism to a sound and constructively com-
plete labelled tableau calculus forces termination, when the logic has the (effec-
tive) finite model property [8, 9].

47

sofronie
Typewritten Text

Each of the tableau calculi can serve as a basis for an effective translation of
satisfiability in Kt(H,R) into first-order logic. The soundness and completeness
of these translations is a consequence of the soundness and completeness of
the calculi, and the fact that derivations are defined over a bounded number
of modal formulae. The encoding of one of the calculi has the property that it
maps satisfiability of a formula in Kt(H,R) into the guarded fragment [1, 5]. This
enables us to show: (i) Kt(H,R) is decidable and has the effective finite model
property, and (ii) satisfiability in Kt(H,R) is PSPACE-complete. Important is
the effective finite model property; using the results in [9] guarantees termination
for all our tableau calculi, when unrestricted blocking is used.

The guarded fragment can be decided by ordered resolution [4]. Therefore,
both ordered resolution and ordered resolution with selection as defined in [4]
decide the axiomatic translation of satisfiability problems in Kt(H,R).

To get insight into the relative performances of different approaches and the
properties of different techniques, we implemented the tableau calculi by en-
coding them into first-order logic and using the Spass-yarralumla system.
Spass-yarralumla is a bottom-up model generator based on the Spass the-
orem prover [13]. Spass-yarralumla emulates the behaviour of semantic la-
belled tableau provers [2]. We used four forms of blocking available in Spass-
yarralumla: (i) sound ancestor blocking; (ii) unrestricted blocking; (iii) sound
ancestor blocking on non-disjoint worlds; and (iv) sound anywhere blocking on
non-disjoint worlds. The encodings of the tableau calculi are implemented as an
extension of the ml2dfg tool used for the empirical evaluation of the axiomatic
translation principle in [6].

The results of the experiments with implementations of the tableau calculi
with Spass-yarralumla showed, on the whole, the encoding based on only
propagation rules fared best for all forms of blocking tested. Similarly good
results were obtained for the encodings involving a mixture of propagation and
axiomatic rules based on the rules for Axioms A and P . For satisfiable problems
the encodings based on only structural rules fared well, too, in two cases giving
best results. In terms of blocking, for all encodings unrestricted blocking was
most expensive on unsatisfiable problems. Sound ancestor blocking produced
best results for all encodings on both satisfiable and unsatisfiable problems.

We also tested Spass in auto mode, which uses a form of ordered resolution
with dynamic selection, on the encodings. As expected many timeouts were ob-
served for encodings based on correspondence properties, as these do not provide
decision procedures. For all other encodings the performances were very close for
unsatisfiable problems. It is interesting how much faster these performances were
than the best performances for Spass-yarralumla. For unsatisfiable problems,
tableau-like approaches need to construct a complete derivation tree in which ev-
ery formula is grounded, and this is generally larger than the non-ground clause
set derived with ordered resolution.

Though the focus has been on Kt(H,R), the techniques and ideas used in this
research are of general nature and provide a useful methodology for developing
practical decision procedures for modal logics. Some aspects are completely rou-

48

tine. The main aspect for which creativity is required and is specific to Kt(H,R)
is the development of the tableau calculi based on propagation or axiomatic rules
and the axiomatic translation to the guarded fragment. Here the contribution
of the paper has been to extend the ideas of the axiomatic translation princi-
ple from [6]. Key is finding effective refinements and showing completeness and
termination, which is in general non-trivial and will not always be possible. All
in all, because of the ubiquity of modal logics, we believe this kind of system-
atic research of decidability, proof theory, refinements and relative efficiency is
widely applicable and useful, and should be extended to more logics, more types
of tableau approaches, other deduction approaches, different provers and more
problem sets.

Full details can be found in [7].

References

1. H. Andréka, I. Németi, and J. van Benthem. Modal languages and bounded frag-
ments of predicate logic. J. Philos. Logic, 27(3):217–274, 1998.

2. P. Baumgartner and R. A. Schmidt. Blocking and other enhancements for bottom-
up model generation methods. In Proc. IJCAR 2006, volume 4130 of LNAI, pages
125–139. Springer, 2006.

3. M. A. Castilho, L. Fariñas del Cerro, O. Gasquet, and A. Herzig. Modal tableaux
with propagation rules and structural rules. Fund. Inform., 3–4(32):281–297, 1997.

4. H. Ganzinger and H. de Nivelle. A superposition decision procedure for the guarded
fragment with equality. In Proc. LICS 1999, pages 295–303. IEEE Computer
Society Press, 1999.

5. E. Grädel. On the restraining power of guards. J. Symbolic Logic, 64:1719–1742,
1999.

6. R. A. Schmidt and U. Hustadt. The axiomatic translation principle for modal
logic. ACM Trans. Comput. Log., 8(4):1–55, 2007.

7. R. A. Schmidt, J. G. Stell, and D. Rydeheard. Axiomatic and tableau-based rea-
soning for Kt(H,R). In R. Goré and A. Kurucz, editors, Advances in Modal Logic,
Volume 10. College Publications, 2014.

8. R. A. Schmidt and D. Tishkovsky. Using tableau to decide expressive description
logics with role negation. In Proc. ISWC 2007 + ASWC 2007, volume 4825 of
LNCS, pages 438–451. Springer, 2007.

9. R. A. Schmidt and D. Tishkovsky. A general tableau method for deciding descrip-
tion logics, modal logics and related first-order fragments. In Proc. IJCAR 2008,
volume 5195 of LNCS, pages 194–209. Springer, 2008.

10. R. A. Schmidt and D. Tishkovsky. Automated synthesis of tableau calculi. Logical
Methods in Comput. Sci., 7(2):1–32, 2011.

11. J. G. Stell, R. A. Schmidt, and D. Rydeheard. Tableau development for a bi-
intuitionistic tense logic. In Proc. RAMiCS 14, volume 8428 of LNCS, pages 412–
428. Springer, 2014.

12. D. Tishkovsky and R. A. Schmidt. Refinement in the tableau synthesis framework.
arXiv e-Print 1305.3131v1, 2013.

13. C. Weidenbach, R. A. Schmidt, T. Hillenbrand, R. Rusev, and D. Topic. System
description: SPASS version 3.0. In Proc. CADE-21, volume 4603 of LNAI, pages
514–520. Springer, 2007.

49

On dual tableau-based decision procedures for

relational fragments

Domenico Cantone1, Joanna Golińska-Pilarek2, and
Marianna Nicolosi-Asmundo1

1 University of Catania, Dept. of Mathematics and Computer Science

email: cantone@dmi.unict.it, nicolosi@dmi.unict.it
2 University of Warsaw, Institute of Philosophy

email: j.golinska@uw.edu.pl

Abstract. We give a brief survey of the main results on dual tableau-

based decision procedures for fragments of the logic of binary relations

and we outline our current work in the design of relational decision pro-

cedures for logics for order-of-magnitude reasoning. Then we shortly hint

at some further research plans on other relational decision procedures.

1 Introduction

In the last decades, the relational representation of many non-classical proposi-
tional logics has been studied and analyzed in a systematic way [20]. A homo-
geneous relational framework grounded on the logic of binary relations RL(1),
presented in [19] and called relational dual tableau, turned out to be an effective
logical means to represent in a modular way the three fundamental parts of a
formal proof system, namely its syntax, semantics, and deduction system. Proof
systems based on the logic of relations have been proposed for many non-classical
logics such as modal and intuitionistic logics, relevant and many-valued logics,
etc. Relational proof systems have also been defined for reasoning in logics of
information and data analysis, for reasoning about time and space, for fuzzy set-
and rough set-based reasoning, for order-of-magnitude and qualitative reasoning,
for dynamic reasoning about programs, etc.

Formulae of RL(1) have the form xRy, where x, y are individual variables
and R is a relational term of RL(1). We recall that the set of relational terms of
RL(1) is the smallest set (with respect to inclusion) built from relational variables
and constants (considering also the constant 1) with the operators ‘∩’, ‘∪’, ‘;’
(binary) and ‘–’, ‘ – 1’ (unary).

The possibility of representing non-classical logics in RL(1) relies on the fact
that once the Kripke-style semantics of the logic under consideration is known,
formulae can be treated as relations. In particular, since in Kripke-style semantics
formulae are interpreted as collections of objects, in their relational representa-
tion they are seen as right ideal relations. In the case of binary relations this
means that (R ; 1) = R is satisfied, where ‘;’ is the composition operation on
binary relations and ‘1’ is the universal relation.

sofronie
Typewritten Text
50

One of the most useful features of the relational methodology is that, given
a logic with a relational formalization, it is possible to construct its relational
dual tableau in a systematic and modular way. On the other hand, using a uni-
form formalism to represent different logics could allow one to detect similarities
among the logics which might be hidden by other formalisms.

Though the relational logic RL(1) is undecidable, it contains several decid-
able fragments. In many cases, however, dual tableau proof systems are not by
themselves decision procedures for decidable fragments of RL(1). This is mainly
due to the way decomposition and specific rules are defined and to the strategy
of proof construction.

Over the years, great efforts have been spent in the construction of dual
tableau proof systems for various logics known to be decidable; little care has
been taken, however, in the design of dual tableau-based decision procedures for
them. On the other hand, it is well known that when a proof system is designed
and implemented, it is important to have decision procedures for decidable logics.
In [11], for instance, an optimized relational dual tableau for RL(1), based on Bi-
nary Decision Graphs, has been implemented; however, such an implementation
turns out not to be effective for decidable fragments.

In this paper we give a short survey of the main results on dual tableau-based
decision procedures for fragments of the logic of binary relations. In particular,
we outline a deterministic dual tableau-based decision procedure RDTRLL

, pre-
sented in [7], for a class of multimodal logics whose accessibility relations may
satisfy the properties of reflexivity, transitivity, and heredity. Next, we hint at
our current work of designing a dual tableau decision procedure in the flavour
of RDTRLL

for a logic for order-of-magnitude reasoning, called OMRN . We re-
call that logics for order-of-magnitude reasoning are non-classical logics used for
qualitative reasoning. In general they are multimodal logics over a strict linear
order with some additional accessibility relations satisfying certain constraints.
Finally, we briefly hint at some further research plans in the ambit of relational
decision procedures and draw our conclusions.

2 Dual tableau-based decision procedures for fragments

of the logic of binary relations

In [20], relational dual tableau-based decision procedures have been constructed
for fragments of RL corresponding to well-known classes of first-order formulae
in prenex normal form, namely the class of existential formulae (∃∗), of universal
formulae (∀∗), and of formulae with universal quantifiers followed by existential
quantifiers (∀∗∃∗). A dual tableau decision procedure for each of these fragments
has been obtained from the general dual tableau system defined in [20] by simply
restricting the applicability of the (;)-rule only in case (a) the variable used in
the (;)-decomposition occurs on the current node of the dual tableau, (b) the
application of the (;)-rule produces some new formulae not already occurring on
the current node, and (c) no other rule is applicable.

sofronie
Typewritten Text

sofronie
Typewritten Text
51

In [18], a relational dual tableau decision procedure has been provided for the
relational logic corresponding to the modal logic K. The system was constructed
in the framework of the original methodology of relational proof systems, de-
termined only by axioms and inference rules, without any external techniques.
Its main feature is uniqueness, i.e., given a formula, the system generates in a
deterministic way only one proof tree for it. Thus, the dual tableau presented
in [18] is not only a base for an algorithm verifying validity of a formula, but
is itself a deterministic decision procedure. Furthermore, due to a special dual
clause representation of modal formulae, the system is very simple as it consists
only of two rules. The system in [18] has been implemented in Prolog in [17].

Fragments of RL(1), characterized by some restrictions in terms of type
(R ; S), have been presented in [8, 9] and, more recently, in [10]. Specifically,
in [8], two fragments of RL(1), respectively called (r ;) and (∪,∩ ;), have been
introduced. The (r ;)-fragment is the collection of the RL(1)-formulae xPy in
which the composition operator ‘;’ can occur only in the following restricted
way. For each subterm of P of the form R ; S, R must belong to a designated
nonempty proper subset RV1 of RV, whereas S can involve all the relational
operators used to construct RL(1)-formulae, with the exception of the converse
operator ‘ – 1’. In the relational interpretation of logics, the elements of RV1 are
meant to denote accessibility relations (resp., roles) in modal (resp., description)
logics. This fragment allows one to express the multimodal logic K and, therefore,
also the description logic ALC [2, 1]. The (∪,∩;)-fragment is an extension of the
(r ;)-fragment in which the constraints on the composition operator ‘;’ are more
relaxed. In particular, the first argument in a term of type R ;S of the (∪,∩ ;)-
fragment can be any term constructed from the relational variables of a proper
nonempty subset of RV, say again RV1, by applying only the operators ‘∪’ and
‘∩’. The restriction on the second argument is the same of the (r ;)-fragment.
The (∪,∩ ;)-fragment can express the description logic ALC(∪,∩) [2]. For each
of these fragments, a dual tableau-based decision procedure is given differing
from the general proof system described in [20] in the definition of the (;)-rule
and in some strictness conditions on the applicability of the rules. (These, in
fact, are the two sources of non termination in dual tableaux for formulae of
such fragments.) The versions of (;)-rule introduced in [8] select the individual
variables to decompose the (;)-formula by analyzing the literals occurring on the
current node of the dual tableau. No blocking condition is needed to guarantee
termination.

In [9] a dual tableau-based decision procedure is defined for a fragment, called
(∪,∩,– 1 ;), of RL(1) which extends the (∪,∩ ;)-fragment by permitting a more
liberal application of the composition operator ‘;’. In fact, the first argument, R,
in a term of type R ; S is allowed to be any term obtained from the relational
variables of a proper nonempty subset of RV, by applying the operators ‘ – 1’,
‘∪’, and ‘∩’. The (∪,∩,– 1 ;)-fragment of RL(1) expresses the description logic
ALCI(∪,∩) [2]. The dual tableau decision procedure for this fragment differs
from the ones introduced in [8] in the definition of the (;)-rule modified to handle
more expressive (;)-formulae containing the ‘ – 1’ operator.

sofronie
Typewritten Text

sofronie
Typewritten Text

sofronie
Typewritten Text
52

We recently proved that decidability holds also for the extended versions of
the (r ;)-fragment and of the (∪,∩ ;)-fragment where the distinction between
variables in RV1 and in RV \RV1 is dropped and, therefore, the same relational
variable can occur both on the left and on the right hand side of compositional
terms. Then, in [10], a fragment of RL(1), called ({1,∪,∩} ;), has been intro-
duced admitting a restricted form of composition where the left subterm, R,
of any term of type (R ; S) is allowed to be either the constant 1 or any term
constructed from the relational variables by applying only the operators of re-
lational intersection and union. Similarly, terms of type (R ; 1) are admitted
only if R is a Boolean term containing neither the complement operator nor the
constant ‘1’. Decidability of the ({1,∪,∩} ;)-fragment is proved by defining a
dual tableau-based decision procedure where a suitable blocking mechanism has
been introduced and rules for compositional and complemented compositional
formulae have been appropriately modified to deal with the constant 1 while
preserving termination. The fragment ({1,∪,∩} ;) is a first result towards the
use of entailment inside relational dual tableau-based decision procedures. We
recall that relational entailment allows one to deal with properties of relational
constants and of relational variables in dual tableau proofs without adding any
specific rule to the basic set of decomposition rules. The ({1,∪,∩} ;)-fragment
allows one also to express some simple forms of inclusion between relations.

The paper [13] presents relational decision procedures in dual tableaux style
for a class of relational logics admitting just one relational constant R with the
properties of reflexivity, transitivity, and heredity (i.e., if xRy and xPz, then
yPz, for all atomic relations P). These results are extended to multimodal logics
in [7], where a class RDLm of fragments of the logic RL, allowing an unbounded
number of relational constants which may enjoy the properties of reflexivity,
transitivity, and heredity, is defined, and a dual tableau decision procedure for
logics belonging to RDLm, called RDTRLL

, is introduced.

The RDTRLL
system is constructed along the lines of the dual tableau method-

ology described in [20]. It consists of decomposition rules to analyze the structure
of the formulae to be proved, of specific rules to deal with properties that can be
enjoyed by the relational constants occurring in the formulae to be proved (such
as reflexivity, transitivity, and heredity), and of axiomatic sets which specify the
closure conditions. Each rule and axiom is applied in a deterministic way without
resorting to external tools. Determinism of the decision procedure is guaranteed
by enforcing an order of application of the rules obtained by associating with
each rule a specific formula of the current node, called pivot formula, and by
introducing a suitable order on the set of relational formulae. An important fea-
ture of the dual tableau procedure is a rule to handle the relational composition
operator, that permits to decompose in a single step compositional formulae and
negative compositional formulae sharing the same left object variable. In Table 1
we report the decomposition rule (glob ;) to handle compositional and negative-
compositional formulae sharing the same left object variable, and in Table 2 the
specific rules (refi), (trani), and (heri) to deal with relational constants Ri sat-
isfying the properties of reflexivity, transitivity, and heredity, respectively. The

sofronie
Typewritten Text
53

RDTRLL
proof system is correct, complete, and terminating. Termination of the

procedure is guaranteed by introducing some restrictions in rule applications to
prevent infinite loops.

The class RDLm can express several multimodal logics whose accessibility
relations are reflexive, transitive, and satisfy the heredity property. Among them
we recall the multimodal logic with reflexive and transitive frames and the de-
scription logic ALCR+ [21].

Table 1. Decomposition rule for compositional formulae in RDTRLL
.

(glob ;)
X ∪ Y ∪

⋃
i∈IΦ

{zn(–(Ri ; Sqi))z0, zn(Ri ; Tji)z0 : qi ∈ Qi, ji ∈ Ji}

X ∪
⋃

i∈IΦ
{znqi

(–Sqi)z0, znqi
Tjiz0 : qi ∈ Qi, ji ∈ Ji}

where:

– n ≥ 1 and Y is the set of literals with left variable zn occurring in the current node;

– IΦ is the set of indices of constants of RC occurring in the current node Φ;

– for all T ∈ RTRDLm , znTz0 /∈ X (the only formulae in the premise that are neither

compositional nor negative-compositional and have zn as left variable are in Y);

– Q =
⋃

i∈IΦ
Qi and J =

⋃
i∈IΦ

Ji are sets of indices such that Qi 6= ∅, for some

i ∈ IΦ (by this condition, if in the current node there is a formula zn(Ri ;Tji)z0, for

some i ∈ IΦ, and no formula of type zn(–(Ri ; Sqi))z0 occurs in the current node,

then zn(Ri ; Tji)z0 cannot be decomposed anymore and therefore it is not repeated

in the successive nodes of the dual tableau);

– Sqi , Tji ∈ RTRDLm , for all qi ∈ Qi, ji ∈ Ji, with i ∈ IΦ;

– the set N = {nqi : qi ∈ Qi, i ∈ IΦ} satisfies the following conditions:

• the elements of N are consecutive natural numbers,

• min(N) = k+1, where k is the largest number such that zk occurs in the premise,

• for all nqi , nq′
i′

∈ N , we have nqi < nq′
i′

if and only if 〈Ri, Sqi〉 < 〈Ri′ , Sq′
i′
〉;

– the pivot of (glob ;) is the formula zn(–(Ri ;Sqi))z0 with the minimal pair 〈Ri, Sqi〉.

3 Current and future developments in qualitative

reasoning and related settings

Qualitative reasoning (QR) is an area of Artificial Intelligence especially useful
for handling situations in which purely numeric methods are too complex or
the available knowledge is vague or incomplete. QR methods are alternatives
to quantitative ones. Although quantitative approaches usually provide precise
answers to precise questions and assumptions, their applicability is very lim-
ited. Indeed, most problems of the physical world cannot be solved by purely
quantitative methods. Moreover, even if numeric methods are used in solving
a problem, often we have to neglect some factors as unimportant in the given
context. Qualitative representation make only as many distinctions (qualitative
classes) as necessary to identify objects and to set essential relationships be-
tween them. Thus, the main aim of QR is to design methods for dealing with

sofronie
Typewritten Text

sofronie
Typewritten Text
54

Table 2. Reflexivity, transitivity, and heredity rules for RDTRLL
.

Reflexivity rule:

(refi)
X ∪ {zn(R

s
i ; T)z0}

X ∪ {zn(R
s
i ; T)z0} ∪ {zn(R

j
i ; T)z0 : j ∈ {0, . . . , s− 1}}

,

where n, s ≥ 1 and T ∈ RTRDLm is either a non-compositional term or a compositional

term (Rj ; T
′), with j 6= i, and zn(Rt

i ; T) /∈ X, for all t > s.

Transitivity rule:

(trani)
X ∪ {zn(Ri ; T)z0}

X ∪ {zn(Ri ; T)z0} ∪ {zn(R
2

i ; T)z0}
,

where n ≥ 1 and T ∈ RTRDLm is either a non-compositional term or a compositional

term (Rj ; T
′), with j 6= i.

Heredity rule:

(heri)
X ∪ {zn(–(Ri ; T))z0} ∪ {zn(– pj)z0 : j ∈ JΦ}

X ∪ {zn(–(R
s
i ; T))z0} ∪ {zn(– pj)z0 : j ∈ JΦ} ∪ {zn(Ri ; (– pj))z0 : j ∈ JΦ}

where: n ≥ 1, T ∈ RTRDLm , and zn(– pj)z0 /∈ X, for any pj ∈ RV.

The pivot of the rule (heri) is zn(–(Ri ; T))z0.

commonsense knowledge without using numerical computation. Over the years,
QR has developed various techniques of qualitative representation and proved to
have a wide variety of potential applications.

An approach in QR concerned with the analysis of physical systems in terms
of relative magnitudes is order-of-magnitude reasoning (OMR). Note that in
purely qualitative reasoning the lack of quantitative information may often lead
to ambiguity. One of the aims of OMR is to avoid this problem. Thus, in a
sense, order-of-magnitude methods are situated midway between numerical and
qualitative formalisms. OMR approaches are usually based on a family of binary
order-of-magnitude relations, among which are comparability, negligibility, and
closeness relations. Such a relative order-of-magnitude paradigm is rich enough
to capture many types of commonsense reasoning. For instance, as presented
in [5], using OMR we may represent and reason in a qualitative way about the
behaviour of a device to control automatically the temperature in a building.
In this representation, temperature is assumed to be either very hot, hot,

ok, cold, or very cold. Next, some general and specific axioms about the
behaviour of the system are introduced. The axioms are expressed in terms of
order-of-magnitude relations, for example: ‘If the temperature is ok and it is
incremented in some value with respect to which the actual value is negligible,
then humidification or extra humidification system must operate’. A detailed
example of order-of-magnitude representation is discussed in [5].

The simplest logic for OMR, OMRN for short, has been introduced in [5]. It
is a multimodal logic with five propositional constants and four necessity op-
erators determined by a strict linear order <, the negligibility relation N , and

sofronie
Typewritten Text
55

their converses. The intended meaning of the negligibility relation defined on the
set of real numbers is as follows: 0 is negligible with respect to any real num-
ber and each number from the qualitative class of sufficiently small numbers is
negligible with respect to any number from the qualitative class of sufficiently
large numbers. Models of OMRN are Kripke structures with a strict linear order,
the negligibility relation, and five landmarks which represent propositional con-
stants and divide the universe of a model into seven qualitative classes. Sound
and complete relational proof systems for OMRN have been presented in [16].
However, the system presented in [16] is not a decision procedure for OMRN ,
even though the logic is decidable, as proved in [12].

Recently, it has been shown that the logic OMRN (C), which is the extension
of OMRN with the comparability relation (see [4]), is also decidable, as shown
in [3]. Its relational proof system, which, however, is not a decision procedure,
can be found in [20, Chapter 15].

Thus, a natural question is how to modify the relational dual tableau systems
for the logics OMRN and OMRN (C) into their relational decision procedures.
Our first step is the construction of a decision procedure along the lines of the
one presented in [7] for a multimodal logic over a strict linear order. Since there
are relational decision procedures for logics with transitive relations, to design
a relational decision procedure for logics over a strict linear order we need, in
particular, a rule for the property of connectedness (for all x and y, either xRy or
yRx or x = y) and irreflexivity (for all x, not xRx). Recall that these properties
are not definable by a standard modal formula, while they are definable by a
relational formula. This fact can be very useful for the construction of a desired
decision procedure.

In [6], a more complex logic for order-of-magnitude reasoning has been intro-
duced. It includes modal operators determined by the relations of negligibility,
non-closeness, and distance. In particular, a simplified version of it, called OMRD,
has been considered. This is the logic determined by a class of Kripke frames
with a strict linear order and a distance relation. As it turns out, the relations
of non-closeness and negligibility are definable in OMRD. It has been shown that
the logic OMRD is sound and complete over Kripke models with a strict total
order and distance relation.

A sound and complete dual tableau system for the relational logic associated
with OMRD has been constructed in [15]. Such a system can be used to verify
whether a formula is OMRD-provable. However, it does not provide any decision
procedure for OMRD, as it may generate infinite trees. In fact, the decision
problem for the logic OMRD is still an open question, which we plan to study.
In case of a positive solution, we also intend to construct a dual tableau-based
decision procedure for the relational logic OMRD.

In addition, we intend to construct relational decision procedures for frag-
ments of multimodal logics whose accessibility relations satisfy properties such
as seriality, symmetry, euclideanity, partial functionality, and weak density. We
have already designed specific rules for each of these properties to be integrated
in the procedure presented in [7]. However, in order to preserve termination of

sofronie
Typewritten Text
56

the procedure, we still have to define suitable conditions and restrictions on their
application.

Acknowledgments. This work was supported by the Polish National Science
Centre research project DEC-2011/02/A/HS1/00395.

References

1. F. Baader. Description logics. In: Reasoning Web: Semantic Technologies for In-

formation Systems, 5th International Summer School. Lecture Notes in Computer

Science 5689, 2009, pp. 1–39.
2. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. Patel-Schneider. The De-

scription Logic Handbook: Theory, Implementation, and Applications. Cambridge

University Press, 2003.
3. Burrieza, A.: Decidability of a logic for order of magnitude qualitative reasoning

with comparability and negligibility relations. CAEPIA 2013: 101-110.
4. Burrieza, A., Ojeda-Aciego, M.: A multimodal logic approach to order of magnitude

qualitative reasoning with comparability and negligibility relations. Fundamenta

Informaticae. 68 (1-2), 21-46 (2005).
5. Burrieza, A., Muñoz-Velasco, E., Ojeda-Aciego, M.: Order of magnitude qualitative

reasoning with bidirectional negligibility. In: Maŕın, R., Onaindia, E., Bugaŕın, A.,

Santos, J. (eds.) CAEPIA 2005. LNCS, vol. 4177, pp. 370–378. Springer (2005).
6. Burrieza, A., Muñoz-Velasco, E., Ojeda-Aciego, M.: A logic for order-of-magnitude

reasoning with negligibility, non-closeness and distance. In: Borrajo, D., Castillo,

L., Corchado, J.M. (eds.) CAEPIA 2007. LNCS, vol. 4788, pp. 210–219 (2007).
7. D. Cantone, J. Golińska-Pilarek, M. Nicolosi-Asmundo. A Relational Dual Tableau

Decision Procedure for Multimodal and Description Logics. In: Proceedings of the

9th International Conference on Hybrid Artificial Intelligence Systems, Salamanca,

Spain, June 11-13, 2014. LNCS, vol. 8480, pp. 466-477 (2014).
8. D. Cantone, M. Nicolosi-Asmundo, E. Or lowska. Dual tableau-based decision pro-

cedures for some relational logics. In: Proceedings of the 25th Italian Conference

on Computational Logic, Rende, Italy, July 7-9, 2010, pp. 1–16. CEUR Workshop

Proceedings vol. 598.
9. D. Cantone, M. Nicolosi-Asmundo, E. Or lowska. Dual tableau-based decision pro-

cedures for relational logics with restricted composition operator. Journal of Ap-

plied Non-classical Logics 21, No 2, 2011, 177-200.
10. D. Cantone, M. Nicolosi-Asmundo, E. Or lowska.A Dual Tableau-based Decision

Procedure for a Relational Logic with the Universal Relation. Submitted (2014).
11. A. Formisano and M. Nicolosi-Asmundo. An efficient relational deductive system

for propositional non-classical logics. Journal of Applied Non-Classical Logics, vol.

16(3-4), pp. 367-408 (2006).
12. Golińska-Pilarek, J.: On decidability of a logic for order of magnitude qualitative

reasoning with bidirectional negligibility. Lecture Notes in Computer Science 7519,

2012, pp. 255–266, doi: 10.1007/978-3-642-33353-8.
13. J. Golińska-Pilarek, T. Huuskonen, E. Munoz-Velasco, Relational dual tableau de-

cision procedures and their applications to modal and intuitionistic logics. Annals

of Pure and Applied Logics vol. 165 (2), pp. 409–427 (2014).
14. Golińska-Pilarek, J., Mora, A., Muñoz-Velasco, E.: An ATP of a relational proof

system for order-of-magnitude reasoning with negligibility, non-closeness and dis-

tance. In: Ho, T-B., Zhou, Z-H. (eds.) PRICAI 2008. LNAI, vol. 5351, pp. 128–139

(2008).

sofronie
Typewritten Text
57

15. Golińska-Pilarek, J., Muñoz-Velasco, E.: Relational approach for a logic for order-

of-magnitude qualitative reasoning with negligibility, non-closeness and distance.

Logic Journal of IGPL. 17(4), 375–394 (2009).

16. Golińska-Pilarek, J., Muñoz-Velasco, E.: Dual tableau for a multimodal logic for

order-of-magnitude qualitative reasoning with bidirectional negligibility. Interna-

tional Journal of Computer Mathematics. 86(10-11), 1707–1718 (2009).

17. J. Golińska-Pilarek, E. Munoz-Velasco, and A. Mora. Implementing a relational

theorem prover for modal logic K. International Journal of Computer Mathematics,

88(9):1869–1884 (2011).

18. J. Golińska-Pilarek, E. Munoz-Velasco, and A. Mora. A new deduction system for

deciding validity in modal logic K. Logic Journal of IGPL 19(2):425–434 (2011).

19. E. Or lowska. Relational interpretation of modal logics. In: H. Andreka, D.

Monk, and I. Nemeti eds., Algebraic Logic. Colloquia Mathematica Societatis Janos

Bolyai, vol. 54, pp. 443–471, North Holland, 1988.

20. Or lowska, E., Golińska-Pilarek, J.: Dual Tableaux: Foundations, Methodology,

Case Studies. Trends in Logic 36, Springer, 2011.

21. U. Sattler. A concept language extended with different kinds of transitive roles.

In: G. Görz and S. Hölldobler, eds., 20 Deutsche Jahrestagung für Künstliche In-

telligenz, n. 1137 LNAI, pp. 333–345. Springer-Verlag, 1996.

58

ADDCT 2014 Keyword Index

Keyword Index

Automated reasoning 46

Combination method 19
Complexity 46

Decidability 31, 46
Decision procedures 50

Empirical investigation 46
Error localization 27

Finite model property 46

Guarded fragment 46

Hilbert axiomatisation 46

Maximum satisfiability modulo theories 27
Modal logic 46

Propositional dynamic logic 31

Qualitative reasoning 50

Relational dual tableau system 50
Relationship between deduction methods 46

Satisfiability problem 19
Separation logic 31

Tableau 46
Type systems 27

Union of non-disjoint theories 19

1

ADDCT 2014 Author Index

Author Index

Balbiani, Philippe 31
Boudou, Joseph 31

Cantone, Domenico 50
Chocron, Paula 19

Echenim, Mnacho 1

Fontaine, Pascal 19

Golinska-Pilarek, Joanna 50

King, Tim 27

Nicolosi-Asmundo, Marianna 50

Pavlinovic, Zvonimir 27
Peltier, Nicolas 1

Ringeissen, Christophe 19
Rydeheard, David 46

Schmidt, Renate A. 46
Stell, John 46

Tourret, Sophie 1

Wies, Thomas 27

1

	Binder1
	coverpage-ws
	empty-page
	preface
	addct-preface
	pc
	toc

	empty-page
	1-invited-paper
	2-paper-2
	3-paper-3
	4-paper-1
	5-paper-5
	6-paper-4
	keyword_index
	empty-page
	author_index

