Preferential Attachment in Online Networks: Measurement and Explanations

Jérôme Kunegis, Institute for Web Science, University of Koblenz-Landau
Marcel Blattner, Laboratory for Web Science, FFHS
Christine Moser, VU University Amsterdam

ACM Web Science 2013

With thanks to Hans Akkermans, Rena Bakhshi and Julie Birkholz
Funded by the European Community’s Seventh Framework Programme under grant agreement n° 257859, ROBUST
Networks Are Everywhere
Power Laws – Scale Free Networks

\[C(d) \sim d^{-\gamma} \]
Preferential Attachment Model

\[P(\{A, i\}) \sim d(i) \]
Linear vs Nonlinear Preferential Attachment

\[f(d) \sim 1 \quad \text{Erdős–Rényi model [1]} \]
\[f(d) \sim d^\beta, \ 0 < \beta < 1 \quad \text{Sublinear model [2]} \]
\[f(d) \sim d \quad \text{Barabási–Albert model [3]} \]
\[f(d) \sim d^\beta, \ \beta > 1 \quad \text{Superlinear model [4]} \]

Erdős–Rényi Model (1959)

\[P(\{i, j\}) = p \]

- Every edge equiprobable
- No structure
- Binomial degree distribution

\[C(d) \sim p^d (1 - p)^{|V| - 1 - d} \]

Barabási–Albert Model (1999)

$P(\{A, i\}) \sim d(i)$

- Generative model
- Scale-free network
- Power law degree distribution

$C(d) \sim d^{-\gamma}$

Sublinear Model

\[P(\{A, i\}) \sim d(i)^\beta \]

\(0 < \beta < 1 \)

- Stretched exponential degree distribution

[1, Eq. 94]

Superlinear Model

\[P(\{A, i\}) \sim d(i)^\beta \]
\[\beta > 1 \]

- A single node attracts 100% of edges asymptotically
- Power law degree distribution in the pre-asymptotic regime

Temporal Network Data

Network at time t_1
Degrees $d_1(u)$

Added edges
Degrees $d_2(u)$

Network at time t_2
Degrees $d_1(u) + d_2(u)$

Hypothesis: $d_2 = \alpha d_1^\beta$
Empirical Measurement of β

\[d_2 = e^{\alpha} \left(1 + d_1 \right)^{\beta} - \lambda \]

Find (α, β) using least squares:

\[\min_{\alpha, \beta} \sum_{u \in V} \left(\alpha + \beta \ln[1 + d_1(u)] - \ln[\lambda + d_2(u)] \right)^2 \]

\[\varepsilon = \exp \left\{ \sqrt{1 / |V|} \sum_{u \in V} (\alpha + \beta \ln[1 + d_1(u)] - \ln[\lambda + d_2(u)])^2 \right\} \]
Example Network: Facebook Wall Posts

Description: User–user wall posts
Format: Edges are directed
Edge weights: Multiple edges are possible
Metadata: Edges have timestamps
Size: 63,891 vertices
Volume: 876,993 edges
Average degree: 27.45 edges / vertex
Maximum degree: 2,696 edges

HTTP://KONECT.UNI-KOBLENZ.DE/NETWORKS/FACEBOOK-WOSN-WALL
Facebook Wall Post Preferential Attachment

Regularized number of new edges \((\lambda + d_2(u))\)

Data

\[
0.1181 \times x^{0.9520}
\]

\[
\varepsilon = 5.3918
\]
Network Categories

<table>
<thead>
<tr>
<th></th>
<th>Interaction Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social network</td>
<td>user–user</td>
</tr>
<tr>
<td>Rating network</td>
<td>user–item</td>
</tr>
<tr>
<td>Communication network</td>
<td>user–user</td>
</tr>
<tr>
<td>Folksonomy</td>
<td>person–tag/item</td>
</tr>
<tr>
<td>Wiki edit network</td>
<td>editor–article</td>
</tr>
<tr>
<td>Explicit interaction network</td>
<td>person–person</td>
</tr>
<tr>
<td>Implicit interaction network</td>
<td>person–item</td>
</tr>
</tbody>
</table>
Comparison

- Social network: $\beta < 1$
- Rating network: $\beta < 1$
- Communication network: $\beta < 1$
- Folksonomy: $\beta < 1$
- Wiki edit network
- Explicit interaction network: $\beta > 1$
- Implicit interaction network: $\beta > 1$
Thank You

Datasets available at:

http://konect.uni-koblenz.de/

Read our blog:

https://blog.west.uni-koblenz.de/2013-04-29/
the-linear-preferential-attachment-assumption-and-its-generalizations/