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Abstract— Detection and tracking of pedestrians is an es-

sential task for autonomous outdoor robots. Modern 3D laser
range finders provide a rich and detailed 360 degree picture
of the environment. Unstructured environments pose a difficult
scenario where a variety of objects with similar shape to a
human like shrubs or small trees occur. Especially in combina-
tion with partial occlusions, sensor noise, and concussions from
traversing rough terrain.

In this paper, we address the problem of tracking multiple
pedestrians in unstructured 3D point clouds by extracting and
discarding additional candidates from vegetation and other
structures. Our approach works exclusively on LIDAR-based
features and uses split and merge steps that create additional
candidates which are classified with a Support Vector Machine.
Tracking is performed by using a particle filter where particles
require a recurring re-detection with a high confidence value
from the classifier. Thus, we enforce a rapid disposal of particles
without adequate re-activation.

Our evaluation is performed in differently populated and
vegetated scenarios as well as on publicly available datasets. Ex-
periments revealed high recall values of the tracking approach,
a reduced detection precision in inhomogeneous environments,
and the capability of robustly tracking pedestrians in difficult
scenarios without the usage of additional sensors.

I. INTRODUCTION

Autonomous robots nowadays conquer increasingly diffi-

cult outdoor environments. Safe navigation requires robust

obstacle avoidance and is a key challenge within this do-

main. Pedestrians are challenging obstacles due to the either

stationary or moving state, the highly varying appearance,

and the complex movement characteristics. Compared to a

vehicle, e.g., a pedestrian can move over difficult terrain

surfaces and walk in arbitrary directions whereas cars are

limited to the driving direction. Furthermore, in groups,

pedestrians might be walking very closely and occlude each

other. In this approach, we present a pedestrian detection

and tracking system using a Velodyne HDL-64E S2. Classi-

fication of these sensor data in unstructured environments is

challenging, as pedestrians can easily be confused with other

objects like trees or bushes. Occasional false classifications

are unavoidable, considering sensor noise, occlusions, and

similar objects in an unknown and highly inhomogeneous

area.

In this work, the challenging task of accurately track-

ing pedestrians without tracking false positives over time

is approached. We describe an interaction-based approach

between a detection algorithm using a Support Vector Ma-

chine (SVM) and a tracking algorithm based on particle

filters. Besides the suppression of re-detections in regions

where a particle filter is already tracking a pedestrian, the

combination allows a rejection of tracked targets if there are

insufficient re-detections by the SVM at the tracking position.

Further, a direct connection of the SVM to the particle filter

grants the opportunity to raise the weights of particles that

are close to a re-detection of the SVM. The resulting tracks

from the particle filters are stored and can be used for other

applications, e.g. sidewalk or dirt track detection.

In a nutshell, our own contribution consists of a new

segmentation strategy using the dp-means algorithm [12] and

the sophisticated interaction between the SVM confidence

and the extinction of particles which is directly coupled

to SVM re-detections in our approach. Note that motion

estimation of the ego vehicle is not part of this contribution.

This paper is organized as follows. In Sec. II we present a

discussion of the state of the art. The detection algorithm

is outlined in Sec. III with a description of the tracking

algorithm in Sec. IV. Finally, in Sec. V we present the

experimental results followed by a discussion in Sec. VI and

a conclusion in Sec. VII.

II. RELATED WORK

Pedestrian detection is an active research topic and ap-

proaches for several sensor modalities exist. Camera-based

approaches ([6] for an overview) mostly address the problem

by detecting and tracking pedestrians in single images or in

video streams. In addition, several Laser-based approaches

emerged over the past years using the data of 2D or 3D

laser range finders (LRFs).

Breitenstein et al. [2] present a tracking-by-detection ap-

proach for multiple persons using particle filters in color

image series. Their implementation allows to track large

numbers of moving pedestrians in 2D space without camera

calibration or knowledge of the ground plane.

Modern 3D LRFs like the Velodyne HDL-64E enable de-

tection and tracking within a 360 degree field of view around

the robot and yield up to 120,000 measurement per rotation.

Recently, a number of approaches used the data of LRFs to

detect and track moving objects in outdoor scenarios. Within

the context of the DARPA Urban Challenge, Petrovskaya and

Thrun [16] present an approach to detect and track vehicle

with a particle filter in 3D data. Their generated model uses

multiple rectangles for precise motion estimation of detected

cars.



Fig. 1. Accepted pedestrians candidates (green frames) extracted from
a large segmented group (blue frame). The clustering algorithm separates
large objects into smaller ones.

Scholer et al. [19] use a Velodyne HDL-64E LRF to detect

and track people in 3D point clouds. Their approach allows

to track partially and fully occluded persons over a certain

amount of time in indoor areas.

Spinello et al. [21] present a combined bottom-up top-

down detector for pedestrians in Velodyne HDL-64E data in

urban outdoor environments. Their approach is independent

from ground plane assumptions and the described detector

uses a layered person model. For tracking, a multi-target

multi-hypothesis approach is used and their system achieves

high equal error rates within a limited range of 20 m.

Navarro-Serment et al. [15] use geometric and motion fea-

tures to detect and track pedestrians while driving in outdoor

regions. Their algorithm detects objects using a virtual 2D

slice and then classifies each object using statistical pattern

recognition techniques. Kidono et al. [11] extend features of

[15] by a slice feature and by reflection intensities of their

Velodyne HDL-64E. Their approach classifies pedestrians

with a SVM in road environments and is able to deal with

low spatial resolutions targets.

Thornton et al. [23] present a multi-sensor approach in-

cluding a 3D LRF for human detection and tracking in

cluttered environments.

A probabilistic person detector on multiple layers of 2D

laser range scans classified using AdaBoost [8] is presented

by Mozos et al. [14]. Each layer detects a different body part

and the conducted experiments reveal robust detection rates

in cluttered environments.

Premebida et al. [17] present a laser-based pedestrian

detection system and focus on information extraction from

LRFs. In their work, the authors explore and describe the po-

tential of LRFs in pedestrian classification and present results

with different classification techniques using automotive and

industrial LRFs.

Carballo et al. [3] fuse multiple 2D LRFs on two layers to

detect pedestrians in uncluttered indoor environments. Gidel

et al. [9] present a pedestrian detection and tracking approach

using an LRF system on multiple layers, too. The proposed

detector fuses the information from four layers and tracking

is performed with a particle filter. Sato et al. [18] use an

Fig. 2. Rejected pedestrian candidates (blue frames) from a wall (green
frame). The clustering algorithm re-merged the smaller boxes. The large
object is also rejected because it is now too large, again.

LRF with six scanning layers to track pedestrians with a

Kalman filter in urban environments. The approach maps

objects with a certain height to a grid map and uses global

nearest neighboring based data association.

III. PEDESTRIAN DETECTION

The following part describes our detection approach and

is divided by descriptions of our ground removal, clustering,

feature extraction, and classification steps.

A. Ground Removal

The Task of ground removal is to separate obstacle points

from ground points (cf. [11], [15]) in order to reduce

the computational load and to perform a first selection of

candidates. In unstructured environments, an assumption of

a planar ground surface with a fixed ground height is likely

to fail. Planar ground regions are often interrupted by hills,

ditches, and other surface variations. In our approach, we

first insert the 3D data into a three-dimensional grid with

a resolution of 0.1×0.1×0.1m3 per cell. Afterwards, the

cells are sorted according to their height, computed from

the highest and the lowest point in each cell, from high to

low. Each of those candidate cell is not only classified wrt.

the contained points, but also wrt. the neighboring cells. A

sliding window with a height threshold is used to calculate

the absolute difference between the highest and the lowest

point among all point of the current cell and in addition all

points of neighboring cell. Based on the resulting values, a

cell is classified as Empty, Ground or Obstacle.

B. Clustering

The ground removal algorithm yields groups of cells

which contain obstacles. Afterwards, those groups need to be

prepared for feature extraction and classification. On the one

hand, the clustering algorithm needs to cluster obstacle cells

to groups of sufficiently large 3D distance measurements

which represent pedestrian candidates. On the other hand,

the algorithm needs to split up large groups of 3D points in

order to separate pedestrians from other obstacles which are

close to them, including trees, building and other pedestrians.
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Fig. 3. Selected detection results with confidence displayed as green filling. A standing pedestrian with a SVM-confidence of > 99% is shown in (a)
and a running pedestrian with a confidence of ≈ 35% in (b). The pedestrian with a confidence of < 1% in (c) outstretches his arms while wearing an
open jacket and is a good example for the limitations of the detector. In (d), a tree in a forest region falsely classified as pedestrian with a confidence of
≈ 65%.

Unstructured outdoor scenes are more complex than urban

environments considering different elevation levels in rough

terrain, diverse vegetation, and sensor noise.

Our approach consists of two steps and aims to find a

high number of pedestrian candidates even if they are located

close to other objects. We explicitly choose not to discard

anything in the slightest similarity to a human. Thus, our

next step is to further analyze clusters that are too large to

represent a single candidate, which in turn yields increased

runtime. In order to keep the overall runtime low, several

algorithms were inspected. Approaches like k-means [13]

exhibit fast runtimes but the original algorithm requires

knowledge of the number of clusters k in advance and an

imprecise initial configuration of the medians may drastically

increase the runtime. The k-means++ extension [1] improves

the initial distribution and provides faster runtimes. The prob-

lem of an unknown k is solved by the dp-means algorithm

[12], which we use and that starts with k = 1 and increments

it, if a cluster grows too large, and in addition exhibits fast

runtimes. A resulting separated cluster is exemplary shown

in Fig. 1 where the replaced cluster is framed in blue and the

new clusters are framed in green.

The aforementioned step results in an over-clustering of

large obstacles, which are now separated wrt. the extent

of pedestrians. Hence, our next step is to re-merge nearby

clusters without a gap between them. The distance between

the centers of two clusters is divided into eight histogram

bins and if the two bins in the middle contain less than 80%

of the measurements compared to the average number of

measurements in all bins, a gap is detected. An example of

re-merged clusters is shown in Fig. 2. Here, the new smaller

clusters cannot be separated adequately and the original

group is maintained. This strategy has the advantage of

finding pedestrian candidates close to any other obstacles

at the expense of an increased runtime and the possibility of

more false-positives.

C. Features

Our feature vector per cluster consists of 8 different

features introduced in the literature, where f1 and f2 are

presented by Premebida et al. [17] and describe the number

of points included in a cluster and the minimum distance

of the cluster to the sensor. Navarro-Serment et al. [15]

apply a Principal Component Analysis (PCA) to the clus-

ters, which represents f3 to f7. Those features are the 3D

covariance matrix of a cluster, the normalized moment of

inertia tensor, the 2D covariance matrix in different zones

(cf. [15]), the normalized 2D histogram for the main plane

and the normalized 2D histogram for the secondary plane. In

another approach, Kidono et al. [11] introduce two additional

features. The first one, the slice feature of a cluster, forms

our last feature f8 and aims to differentiate pedestrians from

false positives in the shape of trees or poles. A cluster is

partitioned into slices along the z-axis and for each slice

the first and second largest eigenvalue is calculated. As the

descriptive power of the slice feature decreases over longer

distances, only a rough estimate remains in long distances.

The other feature introduced by Kidono et al. considers the

distribution of the reflection intensities in the cluster. Since

our LRF is not calibrated wrt. the intensities, this feature

could not be integrated.

D. Classification & Training

The task of the classifier is to perform a binary classifi-

cation between pedestrian and non-pedestrian as precise as

possible. As proposed by Kidono et al. [11], we use a SVM

with radial basis function (RBF) Kernel [4], [5] together

with the feature vector described in the previous subsection.

For training the SVM we annotated pedestrians in different

datasets from the campus Koblenz of the University of

Koblenz-Landau, which contain vegetation, trees and build-

ings. Positive samples are extracted from annotations and

negative samples are generated at random from clusters that

have not been marked as pedestrians by a human annotator.

For this work, we used the LIBSVM library from Chang

and Lin [4] that computes a separating hyperplane which

discriminates between the pedestrian and non-pedestrian. Our

classifier returns a vector of confidence values in [0, 1] for

each class how likely a candidate belongs to the class. The

probability of the highest rated class is used as input value

for the tracking system (cf. Sec. IV-B) and can further be

used to reject candidates with a low probability.
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Fig. 4. Cylindrical measurement model of the particle filter. The left image
outlines the different regions of the model. The right image shows the model
applied to real sensor data with displayed particle hypothesis (cyan: range
readings; yellow: particle; red: best particle).

IV. PEDESTRIAN TRACKING

Our initial idea for the tracking was to use virtual 2D scans

and was inspired by Petrovskaya and Thrun [16]. Virtual 2D

scan have successfully been used during the DARPA Urban

Challenge to identify vehicles in urban scenarios. With an

adopted measurement model we observed that, with a high

resolution 2D scan, many pedestrians could be successfully

tracked. Unlike, in urban scenarios varying inclination angles

of the terrain and many occlusions, e.g. caused by vegetation,

are problematic. Hence, we developed a new measurement

model and decided to focus on an sophisticated interaction

of the detection algorithm with the particle filter. This allows

our approach to discard hypotheses early and enables it to

deal efficiently with false detection that occur frequently in

unstructured environments.

A. Measurement Model

Our measurement model approximates pedestrian geome-

try as cylindrical shape of non-zero depth (cf. Fig. 4). The

likelihood of range readings is modeled according to three

different regions omitting the height value. A region of free

space in form of an outer cylinder is modeled around an inner

cylinder with one half facing the sensor and the other half

facing away. The majority of range readings are expected

to fall in the region facing the sensor (green cylinder-half).

A minority is expected on the other side (yellow cylinder-

half) as humans represent solid objects and laser rays passing

a human occur infrequently, e.g. during limb movement.

The region around the pedestrian is expected to contain few

to none points. Hence, the measurement models separates

neighboring obstacles adequately while taking pedestrians

very close to other objects into account, too.

B. Particle Filter & Particle Extinction

Tracking is performed using a Rao-Blackwellized particle

filter [7] with 40 particles for each target where we estimate

target extent separately for each positional hypothesis. For

the measurement model we follow the derivations of [16].

Each pedestrian hypothesis consists of a 2D position, an

orientation, a rotation angle wrt. the sensor, a velocity, and

a circular extent. The velocity compensates for pedestrian

movement by applying a model of constant velocity due to

the small possible change within one rotation of the LRF.

In case of a false detection, e.g., caused by a tree or a bush,

a particle filter would be initiated and remain on the target

until it disappears from view. Since false detections occur

inevitably in the target domain, we sought a solution to

handle them. Confidence-based approaches (in images [2],

[22]) additionally grade system estimations to reinforce cor-

rect inferences. In our approach, a particle filter is discarded

if either no re-detection occurs for a predefined time or if

re-detections occur but the confidence is insufficiently low

to maintain the target. The first criteria allows continuous

tracking in case of occlusions for a short period of time and

the second criteria ensures that no particle filter remains on

invalid targets for a longer period of time. In other words,

the idea is that many low-confidence detections or few high-

confidence detections are both able to maintain a target, even

if the tracker yields inaccurate results.

V. EXPERIMENTS

Our evaluation was performed on a laptop with an Intel(R)

Core(TM) i7 QM with 1.73 GHz and 8 GB RAM. Training

of the SVM was performed on datasets gathered in vege-

tated areas on the University campus in Koblenz and the

training datasets are completely disjoint from all evaluation

datasets. During the experiments, all parameters were fixed

and pedestrians were annotated within a range of up to 20 m.

The first two datasets were recorded in Koblenz. Gravel

terrain represents a gravel parking lot on rough terrain

with a number of puddles, some bushes and an overgrown

lamp post. The Outdoor area dataset was recorded on a

road turn next to vegetated hillside with two buildings and

a tree. Two Velodyne HDL-64E datasets with pedestrian

ground truth were published by Spinello et al. [20], [21]. The

first dataset Polyterrasse contains pedestrians and bicycles

in an urban area. Tannenstrasse, the second dataset, was

recorded in downtown area and contains additional traffic

participants such as trams and cars. Tables I and II show

the detection respectively the tracking performance on the

datasets. The true positives (TP) denote the number of cor-

rectly detected/tracked pedestrians, the false positives (FP)

denote the number of incorrectly detected/tracked objects

(false alarms), and the false negatives (FN) denote the missed

targets. Precision is calculated as TP
TP+FP

and Recall as TP
TP+FN

.

Runtimes of the algorithm are summarized in Table III.

Results are analyzed and discussed in the next section.

TABLE I

DETECTION RESULTS IN DIFFERENT ENVIRONMENTS.

Dataset
TP FP FN Precision Recall

[No.] [No.] [No.] [%] [%]

Gravel terrain (12 Hz.) 2358 37 221 98.46 91.43

Outdoor area (12 Hz.) 3149 1434 1633 68.71 65.85

Polyterrasse (5 Hz.) 1849 846 886 68.61 67.61

Tannenstrasse (5 Hz.) 1348 2501 1116 35.02 54.71

VI. DISCUSSIONS

The presented approach yields interesting and likewise

unexpected results. Firstly and as expected, the algorithm
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Fig. 5. Tracking results in selected situations. Image (a) shows four pedestrians walking in the same direction and blue lines on the ground visualize
active tracks. In (b), one of the pedestrians changed his direction and crossed path with the others. Since he became entirely occluded once, he had to be
re-detected and the previous track is stored and displayed in white. The third image (c) shows a comparison of tracked persons (blue tracks) with given
ground truth (green tracks). Correspondences with tracking result and ground truth are shown as yellow lines. The last image (d) depicts tracking results
acquired over 10 min with a lot of stored tracks from previously tracked pedestrians in white. These tracks can be useful for other algorithms, e.g. terrain
classification to identify sidewalks or, more general, inference on regions that were recently favored by other traffic participants.

performs well on the Gravel terrain dataset which is less

crowded than the other datasets. On the Outdoor area dataset,

performance is affected by the additional candidates which

reduce the precision. The decrease of the Velodyne HDL-

64E frequency from 12 to 5 Hz has an unexpected but

substantial influence on the SVM classification as the point

density of a pedestrian drastically changes. Once detected,

the particle filter tracks the pedestrians with 5 Hz, but the

missing detections affect the tracking especially on the

Tannenstrasse dataset. The recall rates in crowded datasets

are expectably low due to the additional candidates required

to separate pedestrians standing close to vegetation. In order

to increase the recall values, we would have to exclude

difficult candidates (which is antithetical to the whole idea

of this approach) or exchange the classifier itself for another

method. Considering the runtime results, the algorithms

show an overall good performance. The bottleneck of our

approach is the segmentation step, which is affected from

the additional candidates created by our segmentation.

VII. CONCLUSIONS

We presented an approach for pedestrian tracking in

unstructured environments that aims to identify pedestrians

close to vegetation by using split and merge strategies on

3D clusters. While the algorithms separate pedestrians from

other structures, a great number of newly created candidates

affect precision and runtime. The proposed tracking approach

performs well in all test environments, especially when



TABLE II

TRACKING RESULTS IN DIFFERENT ENVIRONMENTS. NOTICEABLE ARE

IN PARTICULAR THE HIGH RECALL VALUES IN COMPARISON WITH THE

AVERAGE DETECTION RECALL VALUES EXHIBITED IN TABLE I.

Dataset
TP FP FN Precision Recall

[No.] [No.] [No.] [%] [%]

Gravel terrain (12 Hz.) 2545 165 34 93.91 98.68

Outdoor area (12 Hz.) 4556 6448 226 41.40 95.27

Polyterrasse (5 Hz.) 2476 1454 259 63.00 90.53

Tannenstrasse (5 Hz.) 1802 7218 662 19.98 73.13

TABLE III

SYSTEM RUNTIMES IN DIFFERENT ENVIRONMENTS

Mean
Std. Min. Max.

Dataset
[ms]

dev. runtime runtime

[ms] [ms] [ms]

Gravel terrain
Segmentation 63.23 5.21 53.25 144.78

0 min 45 s
Detection 9.76 4.74 0.00 25.43

14 Hz
Tracking 1.48 0.96 0.00 4.31

Overall 74.88 7.54 55.63 159.96

Outdoor area
Segmentation 141.03 57.08 96.89 349.27

12 min 46 s
Detection 31.70 11.16 3.97 73.47

14 Hz
Tracking 32.89 26.49 0.00 159.34

Overall 206.56 64.66 115.84 582.29

Polyterrasse
Segmentation 63.86 5.05 48.70 87.85

2 min 59 s
Detection 16.25 8.32 12.90 43.89

5 Hz
Tracking 6.60 4.69 0.00 43.26

Overall 87.53 12.32 57.54 137.17

Tannenstrasse
Segmentation 551.63 199.05 76.65 2208.51

1 min 39 sec
Detection 44.47 14.15 7.68 100.10

5 Hz
Tracking 96.53 74.86 0.00 591.14

Overall 693.31 214.32 108.20 2390.22

regarding the low recall values of the SVM in cluttered

environments. The SVM is unable to deal with a divergent

update frequency of the Velodyne HDL-64E, thus lowering

precision and recall on the publicly available datasets and

creating a further challenge for the tracking system which

proved reliable under these complicated circumstances.

Considering future work, an extension for crowded en-

vironments could complement the approach and reduce the

maximum runtime when many candidates are present. It is

also possible to exchange the SVM classification for a bank

of classifiers on different height levels of the pedestrians

as proposed in [20] in order to reduce the number of false

positives. Further, a combination with a terrain classification

algorithm [10] could yield more precise predictions of pedes-

trian movement directions according to surface conditions.
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