Exercises for Advances in Theoretical Computer Science
Exercise Sheet 4
Due at 22.11.2021, 10:00 s.t.

Remark: For writing pseudocode, use the language that is defined at the home page of the exercise. For register machine programs, you are allowed to use the instructions defined at the home page of the exercise.

Exercise 4.1
Let P be the following LOOP-program.

```
loop $x_1$ do
    $x_3 := x_3 + 1$
end;
// (1)
loop $x_3$ do
    $x_2 := x_2 + x_3$
end;
// (2)
x_3 := 0
```

a) Fill in the following table with the values of the registers x_1, x_2, x_3 at points (1) and (2) in the program: (i) for input 3; (ii) for input 5.

<table>
<thead>
<tr>
<th>Input 3</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input 5</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b) Which is the output of P for input 3? Which is the output of P for input 5?

c) Which function $f : \mathbb{N} \rightarrow \mathbb{N}$ is computed by P?

Exercise 4.2
Let $\text{fac} : \mathbb{N} \rightarrow \mathbb{N}$ be defined, for every $n \in \mathbb{N}$, by $\text{fac}(n) := n!$.

a) Write a pseudocode program that computes fac.

b) Write a LOOP program that computes fac.

Exercise 4.3
Let the function $\text{fib} : \mathbb{N} \rightarrow \mathbb{N}$ be defined, for every $n \in \mathbb{N}$, by

$$
\text{fib}(n) := \begin{cases}
1 & \text{if} \ n = 0 \\
1 & \text{if} \ n = 1 \\
\text{fib}(n - 1) + \text{fib}(n - 2) & \text{otherwise.}
\end{cases}
$$

a) Write a pseudocode program that computes fib.

b) Write a WHILE program that computes fib.

Exercise 4.4

a) Let $\text{DIV}_{10} : \mathbb{N} \rightarrow \mathbb{N}$ be defined, for every $n \in \mathbb{N}$, by $\text{DIV}_{10}(n)$ is the result of the integer division of n by 10.

 I) Write a pseudocode program that computes DIV_{10}.
 II) Write a GOTO program that computes DIV_{10}.

b) Let $\text{MOD}_{10} : \mathbb{N} \rightarrow \mathbb{N}$ be defined, for every $n \in \mathbb{N}$, by $\text{MOD}_{10}(n)$ is the remainder after the division of n by 10.

 I) Write a pseudocode program that computes MOD_{10}.
 II) Write a GOTO program that computes MOD_{10}.

c) Let $q : \mathbb{N} \rightarrow \mathbb{N}$ be defined, for every $n \in \mathbb{N}$, by $q(n)$ is the sum of the digits in n.

 I) Write a pseudocode program that computes q.
 II) Write a GOTO program that computes q.

Remark: You are allowed to use DIV_{10} and MOD_{10} as auxiliary programs.