Detailed Example for a Reduction

\(P := \{ n \mid L(M_n) \text{ is finite} \} \)

We show that \(P \) is undecidable by reducing the complement of \(H_0 \) to \(P \), i.e. proving that \(\overline{H_0} \leq P \), where \(\overline{H_0} := \{ n \mid M_n \text{ does not halt for input 0} \} \).

We have to find a Turing machine-computable function \(f : \mathbb{N} \to \mathbb{N} \) such that \(i \in \overline{H_0} \iff f(i) \in P \).

Let \(i \in \mathbb{N} \), and let \(M_i \) be the Turing machine with Gödel number \(i \).

We construct \(M_j := R(M_i) \), i.e. \(M_j \) simulates \(M_i \) on tape 2 with empty input. For all \(i \in \mathbb{N} \) we define \(f(i) = j \) as above.

If \(M_i \) does not halt on input 0, \(M_j \) halts on no input and thus accepts \(\emptyset \), which is a finite language. If \(M_i \) halts on input 0, \(M_j \) halts on all inputs and thus accepts \(\Sigma^* \), which is an infinite language.

\[
L(M_j) = \begin{cases}
\emptyset & \text{if } M_i \text{ does not halt on input 0} \\
\Sigma^* & \text{if } M_i \text{ halts on input 0}
\end{cases}
\tag{1}
\]

Then:

\[
\begin{align*}
& f(i) = j \in P \\
\iff & L(M_j) \text{ is finite} \quad (\text{by the definition of } P) \\
\iff & L(M_j) = \emptyset \\
\iff & L(M_j) \text{ can be either } \emptyset \text{ or } \Sigma^*, \text{ but } \Sigma^* \text{ is infinite} \\
\iff & M_i \text{ does not halt on input 0} \quad \text{(by (1))} \\
\iff & i \in \overline{H_0} \quad \text{(by the definition of } \overline{H_0})
\end{align*}
\]
The G"odel number of $M_{i_1}^{(2)}$. As $i_1 \in H_0$, M_{i_1} does not halt on 0, so $L(M_{j_1}) = \emptyset$, hence $j_1 \in P$.

The G"odel number of $M_{i_2}^{(2)}$. As $i_2 \in H_0$, M_{i_2} halts on 0, so $L(M_{j_2}) = \Sigma^*$, hence $j_2 \notin P$.

Figure 1:

- $\mathbb{N} = H_0 \cup \overline{H}_0$
- $\mathbb{N} = P \cup \overline{P}$
- $J = \{f(n) \mid n \in \mathbb{N} \text{ and } f \text{ defined as above}\}$

\mathbb{N} is the set of all G"odel numbers. On the left hand side it is shown as the union of the two disjoint sets H_0 and \overline{H}_0. On the right hand side it is shown as the union of the two disjoint sets P and \overline{P}. J is the range of the function f defined above. For all $i \in H_0$, $f(i) \in \overline{P} \cap J$ and for all $i \in \overline{H}_0$, $f(i) \in P \cap J$.