Underspecification-based Grammatical Feedback Generation Tailored to the Learner’s Current Acquisition Level in an E-Learning System for German as Second Language

Karin Harbusch1, Christel-Joy Cameran2, Johannes Härtel3

Abstract

We present a new feedback strategy implemented in a natural-language-generation-based e-learning system for German as second language (L2). Although the system recognizes a large proportion of the grammar errors in learner-produced written sentences, its automatically generated feedback only addresses errors against rules that are relevant at the learner’s current L2 acquisition stage. This approach is motivated by the results of two recent studies into German as L2 teaching in classroom situations (Diehl et al., 2000; Ballestracci, 2005). Both studies observed that the acquisition stages that L2 learners go through during L2 acquisition, are similar to developmental stages for German as first language (L1), with only slight differences depending on the learner’s native language (French or Italian). The individual acquisition stages often deviate from the organization of the L2 instruction lessons used in the classroom. They also found that attempts to teach L2 rules which surpass the learner’s current acquisition stage, are futile. Our system emulates the observed acquisition stages, and the feedback it provides only addresses errors that are “teachable” at the learner’s acquisition stage; the learner is not notified of errors that are beyond this stage. The computational approach to obtain the desired error-diagnostic behavior is based on underspecifications of the system’s grammar rules.

Keywords: ICALL, e-learning, natural-language generation, grammar teaching, German as second language (L2), personalized feedback

1 University of Koblenz-Landau, Computer Science Department, Universitätsstr. 1, 56070 Koblenz, Germany; harbusch@uni-koblenz.de.
2 Ibidem; cameran@uni-koblenz.de.
3 Ibidem; johanneshaertel@uni-koblenz.de.
1. Introduction: Developmental Stages in L2 Acquisition

In research on Intelligent Computer-Assisted Language Learning (ICALL), grammatical/linguistic-awareness teaching figures prominently (cf. Roehr, 2007; Meurers, 2013). Generating appropriate feedback is essential in any e-learning system for second-language (L2) learning (cf. a recent empirical study by Karthava, 2012). Many authors advocate personalized feedback (Vasilyeva, 2007), i.e. different learners receive different information, and learners have the possibility to choose the feedback that suits their needs or preferences best. An indispensable prerequisite in such systems is an appropriate user model enabling the system to take the student’s knowledge and “cognitive readiness” (Varnosfadrani & Ansari, 2011) into account when providing corrective feedback.

In a study of grammar errors in written essays by 220 French-speaking learners of L2 German in primary and secondary schools in Geneva/Switzerland, Diehl et al. (2000) report that even under classroom conditions, pupils go through acquisition stages similar to those observed in first language (L1) acquisition. Crucially, these acquisition stages do not always reflect the organization of the L2 instruction lessons taught in the classroom. Diehl et al. identify three “strands” in L2 grammar acquisition (see Table 1). None of the consecutive steps in any strand can be left out—no deviation is possible vertically. Horizontal alignment within each strand reflects the personal acquisition level of the learner. Diehl et al. interpret their results as strong support for Pienemann’s “teachability hypothesis” (1998), i.e. grammar instruction has only a chance to be effective if it dovetails with natural acquisition orders and strategies. Ballestracci (2005) argues in the same vein, based on error analyses and classifications of German essays written by Italian-speaking students.

Table 1. The three strands of acquisition levels according to Diehl et al. (2000).

<table>
<thead>
<tr>
<th>(1) Verbal Morphology</th>
<th>(2) Verb Placement</th>
<th>(3) Case Marking in Noun Phrases</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Preconjunctive Phase (Infinitives)</td>
<td>I Main Clauses (Subject-Verb)</td>
<td>I One-Case-System (only Nominative forms)</td>
</tr>
<tr>
<td>II Conjugation of Regular Verbs in Present Tense</td>
<td>II Coordinated Main Clauses Wh- and Yes/No-Questions</td>
<td>II One-Case-System (arbitrary distribution of Nominative/Dative/Accusative forms)</td>
</tr>
<tr>
<td>III Conjugation of Irregular Verbs in Present Tense; Modal Verb + Infinitive</td>
<td>III Correct Topological Assignment of Verbs (Left and Right Verb Bracket)</td>
<td>III Two-Case-System Nominative + Object cases (N-Forms + arbitrarily distributed Dative/Accusative forms)</td>
</tr>
<tr>
<td>IV Auxiliaries + Participles</td>
<td>IV Subordinate Clauses</td>
<td>IV Three-Case-System</td>
</tr>
<tr>
<td>V Past Tense</td>
<td>V Inversion (X-Verb-Subject)</td>
<td></td>
</tr>
<tr>
<td>VI Remaining Forms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. U-COMPASS: Generating Feedback Tailored to the Learner’s Acquisition Level

Based on the empirical findings mentioned above, we tailor the feedback delivered by our e-learning system (called U-COMPASS4) to the personal acquisition level of the learner—an input parameter to be set by the teacher.

In a drag-and-drop manner, the learner freely constructs phrases/sentences in German. In order to identify the learner’s current problem, the student’s and the system’s generation process become aligned. For any action by the learner, e.g. adding/inflecting word forms or (re-)arranging word order, a natural-language paraphrase generator calculates whether the linguistic construction is correct (for details, see Harbusch & Kempen, 2011). Linguistic nomenclature and levels of detail depicted by the system can be set by the teacher. Figure 1 is a screenshot taken during the construction of sentence (1) by an advanced learner exercising word order rules in main and subordinate clauses (cf. phase IV/V in strand (2) of Table 1). The figure illustrates part of the structure underlying sentence (1) in terms of the syntactic formalism of Performance Grammar (PG: Kempen & Harbusch, 2002). The teacher has selected a German nomenclature (e.g. Kopf ‘Head’). Phrasal node labels are suppressed; instead, colors distinguish phrase types, For instance, a MODifier in pink can only bind a leaf node with the same color option.

(1) *Was will der kleine Junge dass ich ihm allenfalls baue*

What wants the little boy that I him at_best build
‘What does the little boy want me to build for him at best’

4 U-COMPASS (Underspecified Combinatorial and Paraphrastic Assembly of Sentence Structure) denotes the new interface to the core system COMPASS (e.g., Harbusch et al., 2013).
PG distinguishes three aspects of the structure of sentences: dependency relations (grammatical functions), constituent structure, and linear order. The dependency relations and the constituent structure together form the hierarchical (or dominance) structure. The dependency relations include functional relations: SB=Subject, OA=Accusative Object, DA=Dative Object, etc.). The constituent structure comprises word categories (parts of speech) and word groups (the various types of phrases and clauses). PG is lexicalized, i.e. every constituency rule is associated with a lexical anchor consisting of at least one word form. Selecting a word form in the lexicon activates a so-called treelet (cf. dependency relations in the second layer of nodes in Figure 1). Linear order is computed in terms of topology-based declarative rules (not spelled out here; see Harbusch & Kempen, 2002). Stretchable rectangular grey boxes represent topologies; they are depicted around the head of a treelet. Within each box, the learner puts the nodes of the corresponding treelet in the desired order. Example (1) illustrates a case where the wh-pronoun was ‘what’—which is the filler of the Direct Object (OA) of baue ‘build’ in the complement clause (KOMPS)—gets fronted in the main-clause topology of will ‘want’. Basically, the core system recognizes any grammatical error by matching student actions against the system’s grammar rules. The student is notified of any rule violation through traffic-light colors: Red color warns against a “hard” error (e.g. an attempt to attach an Adjective as head of the Subject NP); yellow color signals a “soft” error—one that is provisionally accepted by the system but can be corrected at a later time (as in Figure 1).

The aforementioned empirical results (Section 1) suggest that feedback on learner errors is effective only if it is in tune with the learner’s current acquisition level. Hence, U-COMPASS should “overlook” errors that are beyond this level (and thus are currently unteachable). One way to obtain this behavior is by the introduction of malrules (e.g., Fortmann & Forst, 2004). A malrule tells the system to provisionally treat an ill-formed structure as correct. Therefore, the system distinguishes three types of diagnosis: (1) correct structures, (2) incorrect structures rescued by malrule application, and (3) remaining errors resulting from a mismatch with the grammar rules (including malrules). U-COMPASS contains malrules for the typical errors outlined in Table 1 and gives feedback only if a malrule is applied. For instance, the malrule dealing with phase I of strand (3) assigns CASE=Nominative to any grammatical function—although the core system’s PG rule only allows CASE=Nominative for the Subject but not the (In-)Direct Object. For learners in phase II, a malrule allows the case options Nominative/Dative/Accusative to be applied to any grammatical function In phase III, (In-)Direct Objects still allow CASE=Dative/Accusative whereas the Subject is restricted to Nominative. In Phase IV, the full set of rules of the core system is applied without invoking malrules.

Within the PG formalism, the various malrules needed to deal with the three strands of Table 1 can be stated very succinctly by allowing underspecifications for the correct rules. This means modifying the grammar rules such that they overgenerate, i.e. produce certain ill-formed constructions, as desired by the acquisition stages. In the above-mentioned example, the CASE fillers in the treelets have specific underspecification setting (e.g., the Direct Object, which requires CASE=Accusative, has an
UNDERSPEC_CASE= Nominative/Dative/Accusative if phase II in strand (3) is the parameter setting for the learner’s acquisition stage. For linearization, i.e. strand (2), underspecifications tell the system not to apply specific topological rules during certain acquisition stages; e.g., up to phase V, checks of Subject-Verb-Inversion are suppressed.

3. Conclusions
In our e-learning system for L2=German, we have implemented a feedback strategy that only notifies the learner of errors that are “teachable” at the current personal acquisition level of the learner, and overlooks any other errors (which will be brought to the learner’s attention only at a later stage of acquisition). This strategy is inspired by the results of recent empirical studies in German-as-L2 teaching. We are preparing a first evaluation of U-COMPASS in a classroom. Moreover, we use the data material collected in the two cited empirical studies to automatically set up language games where the learners are invited to correct authentic errors at their current acquisition level.

4. Acknowledgements
We would like to thank Gerard Kempen for fruitful discussions on the COMPASS system, and for his comments on an earlier version of this paper.

5. References

