Lambda Calculi With Polymorphism

Ralf Lämmel
Polymorphism -- Why?

• What’s the identity function?

• In the simply typed lambda calculus, we need many!

• Examples

 ✦ \(\lambda x : \text{bool}. \ x \)
 ✦ \(\lambda x : \text{nat}. \ x \)
 ✦ \(\lambda x : \text{bool} \rightarrow \text{bool}. \ x \)
 ✦ \(\lambda x : \text{bool} \rightarrow \text{nat}. \ x \)
 ✦ ...
Kinds of polymorphism

- Parametric polymorphism ("all types")
- Bounded polymorphism ("subtypes")
- Ad-hoc polymorphism ("some types")
- Existential types ("exists as opposed to for all")
Kinds of polymorphism

- **Parametric polymorphism** ("all types")
 - Bounded polymorphism ("subtypes")
 - Ad-hoc polymorphism ("some types")
 - Existential types ("exists as opposed to for all")
System F -- Syntax

\[t ::= x \mid v \mid t \, t \mid t[T] \]

\[v ::= \lambda x : T . t \mid \forall X . t \]

\[T ::= X \mid T \rightarrow T \mid \forall X . T \]

Type variable

Type application

Type abstraction

Polymorphic type

Example:

\[id : \forall X . X \rightarrow X \]

\[id = \forall X . \lambda x : X . x \]

System F [Girard72,Reynolds74] =
(simply-typed) lambda calculus
+ type abstraction & application

This slide is derived from Jaakko Järvi’s slides for his course "Programming Languages", CPSC 604 @ TAMU.
System F -- Typing rules

Syntax

- **t ::=** \(x \) | \(v \) | \(tt \) | \(t [T] \)
- **v ::=** \(\lambda x : T . t \)
- **T ::=** \(X \) | \(T \rightarrow T \) | \(\forall X . t \)

Evaluation rules

- **E-AppFun**

 \[
 t_1 \rightarrow t_1 \rightarrow t_2 \rightarrow t_1[t_2]
 \]

- **E-AppArg**

 \[
 t \rightarrow t \rightarrow vt \rightarrow vt
 \]

- **E-AppAbs**

 \[
 (\lambda x : T . t)v \rightarrow [v/x]t
 \]

- **E-TypeApp**

 \[
 t_1 : U \rightarrow T \rightarrow t_1 : U \rightarrow t_2 \rightarrow t_1[t_2]
 \]

- **E-TypeAppAbs**

 \[
 \Lambda X . t[T_1] : [T_1/X]T
 \]

Typing rules

- **T-Variable**

 \[
 x : T \in \Gamma \quad \Gamma \vdash x : T
 \]

- **T-Abstraction**

 \[
 \Gamma, x : T \vdash u : U \quad \Gamma \vdash \lambda x : T . u : T \rightarrow U
 \]

- **T-Application**

 \[
 \Gamma \vdash t : U \rightarrow T \quad \Gamma \vdash u : U \quad \Gamma \vdash tu : T
 \]

- **T-TypeAbstraction**

 \[
 \Gamma, X \vdash t : T \quad \Gamma \vdash \Lambda X . t : \forall X . T
 \]

- **T-TypeApplication**

 \[
 \Gamma \vdash t : \forall X . T \quad \Gamma \vdash t[T_1] : [T_1/X]T
 \]

Example:

\[
\begin{align*}
id & : \forall X . X \rightarrow X \\
id & = \Lambda X . \lambda x : X . x
\end{align*}
\]
System F -- Evaluation rules

E-AppFun
\[
\frac{t_1 \rightarrow t_1'}{t_1.t_2 \rightarrow t_1'.t_2}
\]

E-AppArg
\[
\frac{t \rightarrow t'}{v.t \rightarrow v.t'}
\]

E-AppAbs
\[
(\lambda x : T.t) \ v \rightarrow [v/x]t
\]

E-TypeApp
\[
\frac{t_1 \rightarrow t_1'}{t_1[T] \rightarrow t_1'[T]}
\]

E-TypeAppAbs
\[
(\forall X.X)[T] \rightarrow [T/X]t
\]

Example:

\[
id : \forall X.X \rightarrow X
\]

\[
id = \forall X.\lambda x : X.x
\]
Examples

<table>
<thead>
<tr>
<th>Term</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>id =(\forall X.\lambda x : X.x)</td>
<td>: (\forall X.X \to X)</td>
</tr>
<tr>
<td>id[bool]</td>
<td>: bool \to bool</td>
</tr>
<tr>
<td>id[bool] true</td>
<td>: bool</td>
</tr>
<tr>
<td>id true</td>
<td>type error</td>
</tr>
</tbody>
</table>

In actual programming languages, type application may be *implicit.*
The doubling function

\[\text{double} = \lambda X. \lambda f : X \to X. \lambda x : X. f (f x) \]

- Instantiated with \(\text{nat} \)

 \[\text{double}_\text{nat} = \text{double} \ [\text{nat}] \]

 : \((\text{nat} \to \text{nat}) \to \text{nat} \to \text{nat}\)

- Instantiated with \(\text{nat} \to \text{nat} \)

 \[\text{double}_\text{nat}_\text{arrow}_\text{nat} = \text{double} \ [\text{nat} \to \text{nat}] \]

 : \(((\text{nat} \to \text{nat}) \to \text{nat} \to \text{nat}) \to (\text{nat} \to \text{nat}) \to \text{nat} \to \text{nat}\)

- Invoking \text{double}

 \[\text{double} \ [\text{nat}] \ (\lambda x : \text{nat}. \text{succ} (\text{succ} x)) \ 5 \to * \ 9 \]
Functions on polymorphic functions

• Consider the polymorphic identity function:

\[id : \forall X. X \rightarrow X \]

\[id = \Lambda X. \lambda x : X. x \]

• Use \(id \) to construct a pair of Boolean and String:

\[\text{pairid} : (\text{Bool}, \text{String}) \]

\[\text{pairid} = (id \, \text{true}, id \, \text{“true”}) \]

• Abstract over \(id \):

\[\text{pairapply} : (\forall X. X \rightarrow X) \rightarrow (\text{Bool}, \text{String}) \]

\[\text{pairapply} = \lambda f : \forall X. X \rightarrow X. (f \, \text{true}, f \, \text{“true”}) \]
Self application

- Not typeable in the simply-typed lambda calculus
 \[\lambda x : ? . x \ x \]

- Typeable in System F
 \[\text{selfapp} : (\forall X. X \to X) \to (\forall X. X \to X) \]
 \[\text{selfapp} = \lambda x : \forall X. X \to X . x \ [\forall X. X \to X] \ x \]
The fix operator (Y)

- Not typeable in the simply-typed lambda calculus
 - Extension required
- Typeable in System F.

\[
\text{fix} : \forall X.(X \to X) \to X
\]

- Encodeable in System F with recursive types.

\[
\Gamma \vdash t : T \to T \quad \Rightarrow \quad \Gamma \vdash \text{fix} t : T
\]

\[
\text{fix} = ?
\]

See [TAPL]
Meaning of “all types”

In the type ∀X. ..., we quantify over “all types”.

- **Predicative polymorphism**
 - X ranges over simple types.
 - Polymorphic types are “type schemes”.
 - Type inference is decidable.
- **Impredicative polymorphism**
 - X also ranges over polymorphic types.
 - Type inference is undecidable.
- **type:type polymorphism**
 - X ranges over all types, including itself.
 - Computations on types are expressible.
 - Type checking is undecidable.

Generality is used for **selfapp**.

Not covered by this lecture.
Kinds of polymorphism

- Parametric polymorphism ("all types")

- **Bounded polymorphism** ("subtypes")

- Ad-hoc polymorphism ("some types")

- Existential types ("exists as opposed to for all")
What is subtyping anyway?

- We say S is a subtype of T.

 $S <: T$

- **Liskov substitution principle**: For each object o_1 of type S there is an object o_2 of type T such that for all programs P defined in terms of T, the behavior of P is unchanged when o_1 is substituted for o_2.

- **Practical type checking**: Any expression of type S can be used in any context that expects an expression of type T, and no type error will occur.
Why subtyping

• Function in near-to-C:

```c
void foo(struct { int a; } r) {
    r.a = 0;
}
```

• Function application in near-to-C:

```c
struct K { int a; int b; } K k;
foo(k); // error
```

• Intuitively, it is safe to pass `k`.
 Subtyping allows it.
Subsumption
(Substitututability of supertypes by subtypes)

\[\Gamma
\vdash t : U \\
U \leq T \\
\Gamma
\vdash t : T \]

This rule implies, for example, that the actual argument’s type in a function application can also be a subtype of the function’s argument type.
Structural subtyping for records

• A subtype may have additional label/type pairs.
• A subtype may permute the label/type pairs.
• A subtype may use subtypes for label/type pairs.
A subtype may have additional label/type pairs.

Example:

\[\{ \text{key : bool, value : int, map : int \rightarrow int} \} <: \{ \text{key : bool, value : int} \} \]
A subtype may permute the label/type pairs.

S-RecordPermutation
\[\{ l_i : T_i \}_{i=1 \ldots n} \] is a permutation of \[\{ k_j : U_j \}_{j=1 \ldots n} \]

\[\{ l_i : T_i \}_{i=1 \ldots n} \preceq \{ k_j : U_j \}_{j=1 \ldots n} \]

Example:
\[\{ \text{key} : \text{bool}, \text{value} : \text{int} \} \preceq \{ \text{value} : \text{int}, \text{key} : \text{bool} \} \]
A subtype may use subtypes for label/type pairs.

\[
\begin{align*}
\text{S-RecordElements} \\
\text{for each } i & \quad T_i \ll U_i \\
\{l_i : T_{i} \}_{i\in 1...n} & \ll \{l_i : U_{i} \}_{i\in 1...n}
\end{align*}
\]

Example:

\[
\{\text{field1 : bool, field2 : \{val : bool\}}\} \ll \{\text{field1 : bool, field2 : \{\}}\}
\]
General rules for subtyping

• Subsumption
• Reflexivity of subtyping
• Transitivity of subtyping
• Subtyping for function types
• Supertype of everything
• Up and down cast
General rules for subtyping

- **Reflexivity**
 \[T <: T \]

- **Transitivity**
 \[T <: U \quad U <: V \quad \Rightarrow \quad T <: V \]

- Example which needs transitivity

 Prove that \(\{a : \text{bool}, b : \text{int}, c : \{l : \text{int}\}\} <: \{c : \{\}\}\)
Subtyping of functions

• Subsumption provides subtyping for function arguments and results.
• An additional rule is needed to provide subtyping for function types.
• Compare this to the need for subtyping rules for record types.
• Consider the following function application:
 \((\lambda f : \{a:\text{int}, b:\text{int}\} \rightarrow \{c:\text{int}\} . f \{a:42, b:88\}) \ g)\)
• Several types can be permitted for \(g\):
 ✦ \(g : \{a:\text{int}, b:\text{int}\} \rightarrow \{c:\text{int}\}\)
 ✦ \(g : \{a:\text{int}\} \rightarrow \{c:\text{int}, d:\text{int}\}\)
 ✦ ...

The actual function may “use” less fields and “return” more fields.
Subtyping of functions

• Function subtyping
 ✦ covariant on return types
 ✦ contravariant on parameter types

\[
\begin{align*}
T_2 &<: T_1 & U_2 &<: U_1 \\
\hline
T_1 \to U_2 &<: T_2 \to U_1
\end{align*}
\]
Supertype of everything

- $T ::= \ldots \mid \textit{top}$
 - The most general type
 - The supertype of all types

$T \ll\!: \textit{top}$
Remember type annotation?

• Syntax:

\[t ::= \ldots \mid t \text{ as } T \]

• Typing rule:

\[\Gamma \vdash t : T \quad \Gamma \vdash t \text{ as } T : T \]

• Evaluation rules:

\[t \rightarrow u \]

\[t \text{ as } T \rightarrow u \text{ as } T \]

\[v \text{ as } T \rightarrow v \]
Annotation as up-casting

• Illustrative type derivation:

\[\vdash t : U \quad U <: T \quad \vdash t : T \quad \vdash t \text{ as } T : T \]

That is, type annotation automagically works as up-cast because of the subsumption rule.

• Example:

\((\lambda x : \text{bool}.\{a = x, b = \text{false}\}) \text{ true as } \{a : \text{bool}\}\)
Annotation as down-casting

• Typing rule:

\[
\frac{\Gamma \vdash t : U}{\Gamma \vdash t \text{ as } T : T}
\]

• Evaluation rules:

\[
\frac{t \rightarrow u}{t \text{ as } T \rightarrow u \text{ as } T}
\]

\[
\frac{\vdash v : T}{v \text{ as } T \rightarrow v}
\]

Potentially too liberal

Runtime type check
Reminder: A type system is a \textit{tractable syntactic} method for proving the absence of certain program behaviors by classifying phrases according to the kinds of values they compute. [B.C. Pierce]

We violate this definition because some rules are not “syntax-driven”!
Violation of syntax direction

• Consider an application:

\[t \ u \text{ where } t \text{ of type } U \rightarrow V \text{ and } u \text{ of type } S. \]

• A type checker would need to figure out that \(S \leq U. \)

 ✦ This is hard with the rules so far (transitivity, subsumption).

 ✦ The rules need to be redesigned.
Analysis of subsumption

\[\text{T-Subsumption} \]
\[\Gamma \vdash t : U \quad U <: T \]
\[\Gamma \vdash t : T \]

• The term in the conclusion can be anything.
 It is just a metavariable.

• Example: Which rule should you apply here?
 \[\Gamma \vdash (\lambda x : U.t) : ? \]

T-Abstraction or T-Subsumption?
Analysis of transitivity

• U does not appear in conclusion.

 Thus, to show $T <: V$, we need to guess a U.

• For instance, try to show the following:

 $$\{y: \text{int}, x: \text{int}\} <: \{x: \text{int}\}$$
Analysis of transitivity

• What is the purpose of transitivity?

Chaining together separate subtyping rules for records!

S-RecordPermutation
\[
\{ l_i : T_i^{i \in 1 \ldots n} \} \text{ is a permutation of } \{ k_j : U_j^{j \in 1 \ldots n} \} \\
\{ l_i : T_i^{i \in 1 \ldots n} \} \:<: \{ k_j : U_j^{j \in 1 \ldots n} \}
\]

S-RecordElements
\[
\text{for each } i \quad T_i \:<: U_i \\
\{ l_i : T_i^{i \in 1 \ldots n} \} \:<: \{ l_i : U_i^{i \in 1 \ldots n} \}
\]

S-RecordNewFields
\[
\{ l_i : T_i^{i \in 1 \ldots n+k} \} \:<: \{ l_i : T_i^{i \in 1 \ldots n} \}
\]
Algorithmic subtyping

• Replace all previous rules by a single rule.

\[
\begin{align*}
\text{S-Record:} & \quad \{l_i \mid i \in 1 \ldots n\} \subseteq \{k_j \mid j \in 1 \ldots m\} \quad l_i = k_j \implies U_i <: T_j \\
& \quad \{k_j : U_j \mid i \in 1 \ldots m\} <: \{l_i : T_i \mid i \in 1 \ldots n\}
\end{align*}
\]

• Correctness / completeness of new rule can be shown.

• Maintain extra rule for function types.

\[
\begin{align*}
\text{S-Function:} & \quad T_1 <: T_2 \quad U_1 <: U_2 \\
& \quad T_2 \rightarrow U_1 <: T_1 \rightarrow U_2
\end{align*}
\]
Algorithmic subtyping

• The subsumption rule is still not syntax-directed.

• The rule is essentially used in function application.

• Express subsumption through an extra premise.

\[
\Gamma \vdash t : U \rightarrow T \quad \Gamma \vdash u : V \quad V <: U
\]

\[
\Gamma \vdash t\ u : T
\]

• Retire subsumption rule.
Kinds of polymorphism

- Parametric polymorphism ("all types")
- Bounded polymorphism ("subtypes")
- Ad-hoc polymorphism ("some types")
- Existential types ("exists as opposed to for all")
Kinds of polymorphism

- Parametric polymorphism ("all types")
- Bounded polymorphism ("subtypes")
- Ad-hoc polymorphism ("some types")
- Existential types ("exists as opposed to for all")
Existential types serve a specific purpose:

A means for **information hiding (encapsulation)**.

- Remember predicate logic. \(\forall x. P(x) \equiv \neg (\exists x. \neg P(x)) \)

- Existential types can be encoded as universal types; see [TAPL].
Overview

- Syntax of types: \[T ::= \cdots \mid \{ \exists X, T \} \]

- Normal forms: \[v ::= \cdots \mid \{ *T, v \} \]

- Terms: \[t ::= \cdots \mid \{ *T, t \} \text{ as } T \]
 \[\mid \text{let } \{ X, x \} = t \text{ in } t \]
Constructing existentials

- A record:
 \[r : \{ a : \text{nat}, b : \text{nat} \rightarrow \text{nat} \} \]
 \[r = \{ a = 1, b = \lambda x : \text{nat} . \text{pred} \, x \} \]

- A package with \(\text{nat} \) as hidden type:
 \[p : \{ \exists X, \{ a : X, b : X \rightarrow \text{nat} \} \} \]
 \[p = \{ \ast \text{nat}, r \} \]

- The type system makes sure that \(\text{nat} \) is **inaccessible** from outside.
Multiple types make sense for the package. Hence, the programmer must provide an annotation upon construction.

- \(r : \{ a : \text{nat}, b : \text{nat} \rightarrow \text{nat} \} \)

\[
r = \{ a = 1, b = \lambda x : \text{nat} . \text{pred} \ x \}
\]

- \(p = \{*\text{nat}, r \} \text{ as } \exists X, \{ a : X, b : X \rightarrow X \} \}

\(p \) has type: \(\exists X, \{ a : X, b : X \rightarrow X \} \)

\(p \) *preferred*

- \(p' = \{*\text{nat}, r \} \text{ as } \exists X, \{ a : X, b : X \rightarrow \text{nat} \} \}

\(p' \) has type: \(\exists X, \{ a : X, b : X \rightarrow \text{nat} \} \)
We can have the same existential type with different representation types.

- \(p_1 = \{\ast \mathsf{nat}, \{a = 1, b = \lambda x: \mathsf{nat}. \text{iszero } x\}\} \)

as \(\exists X, \{a: X, b: X \rightarrow \mathsf{bool}\} \)

- \(p_2 = \{\ast \mathsf{bool}, \{a = \text{false}, b = \lambda x: \mathsf{bool}. \text{if } x \text{ then false else true}\}\} \)

as \(\exists X, \{a: X, b: X \rightarrow \mathsf{bool}\} \)
Unpacking existentials
(Opening package, importing module)

• Example -- apply \(b \) to \(a \):

\[
\text{let } \{X,x\} = \text{p2 in } (x.b \ x.a) \rightarrow \ast \text{ true : bool}
\]

• Syntax:

\[
\text{let } \{X,x\} = t \text{ in } t'
\]

✦ The value \(x \) of the existential becomes available.

✦ The representation type is not accessible (only \(X \)).
Typing rules

T-PackExistential

\[\Gamma \vdash t : [U/X] T \]

\[\Gamma \vdash \{U, t\} \text{ as } \{\exists X, T\} : \{\exists X, T\} \]

T-UnpackExistential

\[\Gamma \vdash t_1 : \{\exists X, T_{12}\} \quad \Gamma, X, x : T_{12} \vdash t_2 : T_2 \]

\[\Gamma \vdash \text{let } \{X, x\} = t_1 \text{ in } t_2 : T_2 \]

Substitution checks that the abstracted type of \(t \) can be instantiated with the hidden type to the actual type of \(t \).

Only expose abstract type of existential!
Evaluation rules

E-Pack

\[
\frac{t \rightarrow t'}{
\{ *T, t \} \text{ as } U \rightarrow \{ *T, t' \} \text{ as } U}
\]

E-Unpack

\[
\frac{t_1 \rightarrow t_1'}{\text{let } \{ X, x \} = t_1 \text{ in } t_2 \rightarrow \text{let } \{ X, x \} = t_1' \text{ in } t_2}
\]

E-UnpackPack

\[
\text{let } \{ X, x \} = (\{ *T, v \} \text{ as } U) \text{ in } t_2 \rightarrow [T/X][v/x]t_2
\]

The hidden type is known to the evaluation, but the type system did not expose it; so \(t_2 \) cannot exploit it.
Illustration of information hiding

• The type can be used in the scope of the unpacked package.

\[
\text{let } \{X, x\} = t \text{ in } (\lambda y:X. x.b y) \ x.a \rightarrow \text{false : bool}
\]

• The representation type must remain abstract.

\[
t = \{\text{*nat, } a = 1, b = \lambda x: \text{nat}. \text{iszero } x\} \text{ as } \{\exists X, \{a:X, b:X \rightarrow \text{bool}\}\}\}
\]

\[
\text{let } \{X,x\} = t \text{ in pred x.a} \quad \text{// Type error!}
\]

• The type must not leak into the resulting type:

\[
\text{let } \{X, x\} = t \text{ in x.a} \quad \text{// Type error!}
\]
• **Summary**: Lambdas with somewhat sexy types
 - *Done*: ∀, ∃, <:, ...
 - *Not done*: μ, ...

• **Prepping**: “Types and Programming Languages”
 - *Chapters*: 15, 16, 22, 23, 24

• **Outlook**:
 - Object calculi
 - Process calculi
 - More paradigms