1. **Propositional logic**
 - Syntax; semantics; models, validity, satisfiability, entailment, equivalence;
 - Translation to CNF/DNF (in particular structure-preserving translations!);
 - Resolution: soundness; completeness (multiset orderings; ordering on clauses; the model construction; idea of completeness proof)
 - The DPLL method (only the method, no soundness/completeness proofs required)

2. **First-order logic**
 - Syntax, semantics: models and assignments; validity, satisfiability; Entailment and equivalence;
 - Validity vs. unsatisfiability.
 - The theory of a structure; Logical theories (syntactic/semantics view).
 - Normal forms and Skolemization
 - Herbrand interpretations (definition)
 - General resolution:
 - resolution for ground clauses, Robinson’s idea;
 - unification (definition of a most general unifier; algorithm for computing a most general unifier; no proofs required),
 - lifting lemma (idea),
 - saturation of sets of general clauses, refutational completeness of general resolution (idea), ordered resolution with selection, redundancy
 - Herbrand’s theorem, Craig Interpolation, the theorem of Löwenheim-Skolem (only statements)

3. **Decidable fragments of first-order logic**
 - Variable-free formulae
 - The Bernays-Schoenfinkel class
 (definition, main idea in decidability proof)
 - The Ackermann class
 (definition, rough idea of decidability proof presented in the lecture)
• The monadic class (definition, idea of decidability proof presented in the lecture)

4. Satisfiability with respect to a theory

• T-validity vs. T-satisfiability.

5. Decision procedures for checking satisfiability with respect to a theory for conjunctions of literals

• Single theories
 – Theory of uninterpreted function symbols
 (validity of univ. formulae; satisfiability of ground formulae)
 Satisfiability check using congruence closure on DAGs (the algorithm presented in the lecture)
 – Difference logic (method for checking satisfiability, idea of proof)
 – Linear arithmetic over \(\mathbb{Q} \) and \(\mathbb{R} \):
 * Fourier-Motzkin Quantifier Elimination
 * Loos-Weispfenning Quantifier Elimination

• Combinations of theories
 – Combinations of theories (definition: syntactical vs. semantical view; examples)
 – The Nelson/Oppen procedure for reasoning in combinations of theories over disjoint signatures
 * the method
 (purification; propagation - guessing version vs. backtracking version)
 * soundness and completeness
 (completeness: definition of stable infinity; role of stable infinity; idea of completeness proof)
 * deterministic version and convexity

6. Satisfiability modulo a theory for sets of clauses

• DPLL(T)

7. Theories of data structures

• The array property fragment (definition; decision procedure (the 7 steps)).
• (The fragment of the theory of pointers briefly described in the lecture is not required for exam)