Decision Procedures for Verification

Combinations of Decision Procedures (1)

24.01.2022

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de
Until now:

Decision Procedures

- Uninterpreted functions
 - congruence closure
- Numerical domains
 - difference logic

$LI(\mathbb{R})$ and $LI(\mathbb{Q})$

Method of Fourier-Motzkin

Method of Weisspfenning-Loos
3.5. Combinations of theories

The combined validity problem

For $i = 1, 2$
• let \mathcal{T}_i be a first-order theory in signature Σ_i
• let \mathcal{L}_i be a class of (closed) Σ-formulae

Let $\mathcal{T}_1 \bigoplus \mathcal{T}_2$ be a combination of \mathcal{T}_1 and \mathcal{T}_2
Let $\mathcal{L}_1 \bigoplus \mathcal{L}_2$ be a combination of \mathcal{L}_1 and \mathcal{L}_2

Problem: Given ϕ in $\mathcal{L}_1 \bigoplus \mathcal{L}_2$, is it the case that $\mathcal{T}_1 \bigoplus \mathcal{T}_2 \models \phi$?
The combined decidability problem I

For $i = 1, 2$
• let \mathcal{T}_i be a first-order theory in signature Σ_i
• let \mathcal{L}_i be a class of (closed) Σ-formulae
• assume the \mathcal{T}_i-validity problem for \mathcal{L}_i is decidable

Let $\mathcal{T}_1 \oplus \mathcal{T}_2$ be a combination of \mathcal{T}_1 and \mathcal{T}_2
Let $\mathcal{L}_1 \oplus \mathcal{L}_2$ be a combination of \mathcal{L}_1 and \mathcal{L}_2

Question: Is the $\mathcal{T}_1 \oplus \mathcal{T}_2$-validity problem for $\mathcal{L}_1 \oplus \mathcal{L}_2$ decidable?
The combined decidability problem II

For $i = 1, 2$
- let T_i be a first-order theory in signature Σ_i
- let L_i be a class of (closed) Σ-formulae
- P_i decision procedure for T_i-validity for L_i

Let $T_1 \oplus T_2$ be a combination of T_1 and T_2
Let $L_1 \oplus L_2$ be a combination of L_1 and L_2

Question: Can we combine P_1 and P_2 modularly into a decision procedure for the $T_1 \oplus T_2$-validity problem for $L_1 \oplus L_2$?

Main issue: How are $T_1 \oplus T_2$ and $L_1 \oplus L_2$ defined?
Combinations of theories and models

Forgetting symbols

Let $\Sigma = (\Omega, \Pi)$ and $\Sigma' = (\Omega', \Pi')$ s.t. $\Sigma \subseteq \Sigma'$, i.e., $\Omega \subseteq \Omega'$ and $\Pi \subseteq \Pi'$

For $\mathcal{A} \in \Sigma'$-alg, we denote by $\mathcal{A}|_{\Sigma}$ the Σ-structure for which:

$$U_{\mathcal{A}|_{\Sigma}} = U_{\mathcal{A}}, \quad f_{\mathcal{A}|_{\Sigma}} = f_{\mathcal{A}} \quad \text{for } f \in \Omega;$$

$$P_{\mathcal{A}|_{\Sigma}} = P_{\mathcal{A}} \quad \text{for } P \in \Pi$$

(ignore functions and predicates associated with symbols in $\Sigma' \setminus \Sigma$)

$\mathcal{A}|_{\Sigma}$ is called the restriction (or the reduct) of \mathcal{A} to Σ.

Example: $\Sigma' = (\{+/2, \ast/2, 1/0\}, \{\leq /2, \text{even}/1, \text{odd}/1\})$

$\Sigma = (\{+/2, 1/0\}, \{\leq /2\}) \subseteq \Sigma'$

$\mathcal{N} = (\mathbb{N}, +, \ast, 1, \leq, \text{even}, \text{odd}) \quad \mathcal{N}|_{\Sigma} = (\mathbb{N}, +, 1, \leq)$
One possibility of combining theories

Syntactic view: \(\mathcal{T}_1 + \mathcal{T}_2 = \mathcal{T}_1 \cup \mathcal{T}_2 \subseteq F_{\Sigma_1 \cup \Sigma_2}(X) \)

\[
\text{Mod}(\mathcal{T}_1 \cup \mathcal{T}_2) = \{ \mathcal{A} \in (\Sigma_1 \cup \Sigma_2)\text{-alg} \mid \mathcal{A} \models G, \text{ for all } G \text{ in } \mathcal{T}_1 \cup \mathcal{T}_2 \}
\]

where \(\Sigma_1 \cup \Sigma_2 = (\Omega_1, \Pi_1) \cup (\Omega_2, \Pi_2) = (\Omega_1 \cup \Omega_2, \Pi_1 \cup \Pi_2) \)
One possibility of combining theories

Syntactic view: \(\mathcal{T}_1 + \mathcal{T}_2 = \mathcal{T}_1 \cup \mathcal{T}_2 \subseteq F_{\Sigma_1 \cup \Sigma_2}(X) \)

\[
\text{Mod}(\mathcal{T}_1 \cup \mathcal{T}_2) = \{ A \in (\Sigma_1 \cup \Sigma_2)\text{-alg} \mid A \models G, \text{ for all } G \text{ in } \mathcal{T}_1 \cup \mathcal{T}_2 \}
\]

Semantic view: Let \(\mathcal{M}_i = \text{Mod}(\mathcal{T}_i), i = 1, 2 \)

\[
\mathcal{M}_1 + \mathcal{M}_2 = \{ A \in (\Sigma_1 \cup \Sigma_2)\text{-alg} \mid A|_{\Sigma_i} \in \mathcal{M}_i \text{ for } i = 1, 2 \}
\]
One possibility of combining theories

Syntactic view: \(\mathcal{T}_1 + \mathcal{T}_2 = \mathcal{T}_1 \cup \mathcal{T}_2 \subseteq F_{\Sigma_1 \cup \Sigma_2}(X) \)

\[\text{Mod}(\mathcal{T}_1 \cup \mathcal{T}_2) = \{ A \in (\Sigma_1 \cup \Sigma_2)\text{-alg} \mid A \models G, \text{ for all } G \in \mathcal{T}_1 \cup \mathcal{T}_2 \} \]

Semantic view: Let \(\mathcal{M}_i = \text{Mod}(\mathcal{T}_i), i = 1, 2 \)

\[\mathcal{M}_1 + \mathcal{M}_2 = \{ A \in (\Sigma_1 \cup \Sigma_2)\text{-alg} \mid A|_{\Sigma_i} \in \mathcal{M}_i \text{ for } i = 1, 2 \} \]

\[A \in \text{Mod}(\mathcal{T}_1 \cup \mathcal{T}_2) \text{ iff } A \models G, \text{ for all } G \in \mathcal{T}_1 \cup \mathcal{T}_2 \]

\[\text{iff } A|_{\Sigma_i} \models G, \text{ for all } G \in \mathcal{T}_i, i = 1, 2 \]

\[\text{iff } A|_{\Sigma_i} \in \mathcal{M}_i, i = 1, 2 \]

\[\text{iff } A \in \mathcal{M}_1 + \mathcal{M}_2 \]
One possibility of combining theories

Syntactic view: \(\mathcal{T}_1 + \mathcal{T}_2 = \mathcal{T}_1 \cup \mathcal{T}_2 \subseteq F_{\Sigma_1 \cup \Sigma_2}(X) \)

\[\text{Mod}(\mathcal{T}_1 \cup \mathcal{T}_2) = \{ \mathcal{A} \in (\Sigma_1 \cup \Sigma_2)\text{-alg} \mid \mathcal{A} \models G, \text{ for all } G \text{ in } \mathcal{T}_1 \cup \mathcal{T}_2 \} \]

Semantic view: Let \(\mathcal{M}_i = \text{Mod}(\mathcal{T}_i), i = 1, 2 \)

\[\mathcal{M}_1 + \mathcal{M}_2 = \{ \mathcal{A} \in (\Sigma_1 \cup \Sigma_2)\text{-alg} \mid \mathcal{A}_{|\Sigma_i} \in \mathcal{M}_i \text{ for } i = 1, 2 \} \]

Remark: \(\mathcal{A} \in \text{Mod}(\mathcal{T}_1 \cup \mathcal{T}_2) \) iff \(\mathcal{A}_{|\Sigma_1} \in \text{Mod}(\mathcal{T}_1) \) and \(\mathcal{A}_{|\Sigma_2} \in \text{Mod}(\mathcal{T}_2) \)

Consequence: \(\text{Th}(\text{Mod}(\mathcal{T}_1 \cup \mathcal{T}_2)) = \text{Th}(\mathcal{M}_1 + \mathcal{M}_2) \)
Example

1. **Presburger arithmetic + UIF**

\[\text{Th}(\mathbb{Z}_+) \cup \text{UIF} \quad \Sigma = (\Omega, \Pi) \]

Models: \((A, 0, s, +, \{ f_A \}_{f \in \Omega}, \leq, \{ P_A \}_{P \in \Pi})\)

where \((A, 0, s, +, \leq) \in \text{Mod}(\text{Th}(\mathbb{Z}_+)).\)

2. **The theory of reals + the theory of a monotone function \(f\)**

\[\text{Th}(\mathbb{R}) \cup \text{Mon}(f) \quad \text{Mon}(f) : \forall x, y (x \leq y \rightarrow f(x) \leq f(y)) \]

Models: \((A, +, \ast, f_A, \{\leq\}), \text{where} \)

where \((A, +, \ast, \leq) \in \text{Mod}(\text{Th}(\mathbb{R})).\)

\((A, f_A, \leq) \models \text{Mon}(f), \text{i.e. } f_A : A \rightarrow A \text{ monotone.}\)

Note: The signatures of the two theories share the \(\leq\) predicate symbol
Combinations of theories

Definition. A theory is consistent if it has at least one model.

Question: Is the union of two consistent theories always consistent?

Answer: No. (Not even when the two theories have disjoint signatures)

Example:

\[\Sigma_1 = (\Omega_1, \emptyset), \quad \Sigma_2 = (\{c/0, d/0\}, \emptyset), \quad c, d \notin \Omega_1 \]

\[\mathcal{T}_1 = \{\exists x, y, z (x \not\approx y \land x \not\approx z \land y \not\approx z)\} \]

\[\mathcal{T}_2 = \{\forall x (x \approx c \lor x \approx d)\} \]

\[A \in \text{Mod}(\mathcal{T}_1) \iff |U_A| \geq 3. \]

\[B \in \text{Mod}(\mathcal{T}_2) \iff |U_B| \leq 2. \]
Combinations of theories

The combined decidability problem

For $i = 1, 2$
• let \mathcal{T}_i be a first-order theory in signature Σ_i
• assume the \mathcal{T}_i ground satisfiability problem is decidable

Let $\mathcal{T}_1 \oplus \mathcal{T}_2$ be a combination of \mathcal{T}_1 and \mathcal{T}_2

Question:
Is the $\mathcal{T}_1 \oplus \mathcal{T}_2$ ground satisfiability problem decidable?
Goal: Modularity

Modular Reasoning

Example:

\(\mathcal{T}_0: \Sigma_0\)-theory.

\(\mathcal{T}_i: \Sigma_i\)-theory; \(\mathcal{T}_0 \subseteq \mathcal{T}_i \) \(\Sigma_0 \subseteq \Sigma_i \).

Can use provers for \(\mathcal{T}_1, \mathcal{T}_2 \) as blackboxes to prove theorems in \(\mathcal{T}_1 \cup \mathcal{T}_2 \)?

Which information needs to be exchanged between the provers?
Combinations of theories

For $i = 1, 2$
• let \mathcal{T}_i be a first-order theory in signature Σ_i
• s.t. the ground satisfiability problem for \mathcal{T}_i is decidable

Question: Is the ground satisfiability problem for $\mathcal{T}_1 \cup \mathcal{T}_2$ decidable?
Combinations of theories

For $i = 1, 2$
- let T_i be a first-order theory in signature Σ_i
- s.t. the ground satisfiability problem for T_i is decidable

Question: Is the ground satisfiability problem for $T_1 \cup T_2$ decidable?

In general: No (restrictions needed for affirmative answer)

Example. Word problem for T: Decide if $T \models \forall x (s \approx t)$

- A: theory of associativity
- G: finite set of ground equations
 (presentation for semigroup with undecidable word problem)
 (There exists finitely-presented semigroup with undecidable word problem [Matijasevic’67])

Word problem: decidable for A, G; undecidable for $A \cup G$
Combinations of theories

For $i = 1, 2$
• let \mathcal{T}_i be a first-order theory in signature Σ_i
• s.t. the ground satisfiability problem for \mathcal{T}_i is decidable

Question: Is the ground satisfiability problem for $\mathcal{T}_1 \cup \mathcal{T}_2$ decidable?

In general: No (restrictions needed for affirmative answer)

Example. Word problem for \mathcal{T}: Decide if $\mathcal{T} \models \forall x (s \approx t)$

Simpler instances: combinations of theories over disjoint signatures, theories sharing constructors, compatibility with shared theory ...
Combinations of theories

For \(i = 1, 2 \)
\[\bullet \text{let } \mathcal{T}_i \text{ be a first-order theory in signature } \Sigma_i \]
\[\bullet \text{s.t. the ground satisfiability problem for } \mathcal{T}_i \text{ is decidable} \]

Question: Is the ground satisfiability problem for \(\mathcal{T}_1 \cup \mathcal{T}_2 \) decidable?

In general: No (restrictions needed for affirmative answer)

Theorem [Bonacina, Ghilardi et.al, IJCAR 2006]
There are theories \(\mathcal{T}_1, \mathcal{T}_2 \) with disjoint signatures and decidable ground satisfiability problem such that ground satisfiability in \(\mathcal{T}_1 \cup \mathcal{T}_2 \) is undecidable.

Idea: Construct \(\mathcal{T}_1 \) such that ground satisfiability is decidable, but it is undecidable whether a constraint \(\Gamma_1 \) is satisfiable in an infinite model of \(\mathcal{T}_1 \). (Construction uses Turing Machines). Let \(\mathcal{T}_2 \) having only infinite models.
Combination of theories over disjoint signatures

The Nelson/Oppen procedure

Given: \(T_1, T_2 \) first-order theories with signatures \(\Sigma_1, \Sigma_2 \)

Assume that \(\Sigma_1 \cap \Sigma_2 = \emptyset \) (share only \(\approx \))

\(P_i \) decision procedures for satisfiability of ground formulae w.r.t. \(T_i \)

\(\phi \) quantifier-free formula over \(\Sigma_1 \cup \Sigma_2 \)

Task: Check whether \(\phi \) is satisfiable w.r.t. \(T_1 \cup T_2 \)

Note: Restrict to conjunctive quantifier-free formulae

\(\phi \mapsto DNF(\phi) \)

\(DNF(\phi) \) satisfiable in \(T \) iff one of the disjuncts satisfiable in \(T \)
Example

[Nelson & Oppen, 1979]

Theories

<table>
<thead>
<tr>
<th>Theory</th>
<th>Description</th>
<th>Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{R})</td>
<td>theory of rationals</td>
<td>(\Sigma_{\mathcal{R}} = {\leq, +, -, 0, 1})</td>
</tr>
<tr>
<td>(\mathcal{L})</td>
<td>theory of lists</td>
<td>(\Sigma_{\mathcal{L}} = {\text{car, cdr, cons}})</td>
</tr>
<tr>
<td>(\mathcal{E})</td>
<td>theory of equality (UIF)</td>
<td>(\Sigma: \text{free function and predicate symbols})</td>
</tr>
</tbody>
</table>
Example

[Nelson & Oppen, 1979]

Theories

<table>
<thead>
<tr>
<th>Theory</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{R})</td>
<td>theory of rationals (\Sigma_{\mathcal{R}} = {\leq, +, -, 0, 1} \approx)</td>
</tr>
<tr>
<td>(\mathcal{L})</td>
<td>theory of lists (\Sigma_{\mathcal{L}} = {\text{car, cdr, cons}} \approx)</td>
</tr>
<tr>
<td>(\mathcal{E})</td>
<td>theory of equality (UIF) (\Sigma:) free function and predicate symbols (\approx)</td>
</tr>
</tbody>
</table>

Problems:

1. \(\mathcal{R} \cup \mathcal{L} \cup \mathcal{E} \models \forall x, y (x \leq y \land y \leq x + \text{car} (\text{cons}(0, x)) \land P(h(x) - h(y)) \rightarrow P(0)) \)

2. Is the following conjunction:

\[
 c \leq d \land d \leq c + \text{car} (\text{cons}(0, c)) \land P(h(c) - h(d)) \land \neg P(0)
\]

satisfiable in \(\mathcal{R} \cup \mathcal{L} \cup \mathcal{E} \)?
An Example

<table>
<thead>
<tr>
<th>Σ</th>
<th>(\Sigma)</th>
<th>(\mathcal{R})</th>
<th>(\mathcal{L})</th>
<th>(\mathcal{E})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axioms</td>
<td>(x + 0 \approx x)</td>
<td>{≤, +, −, 0, 1}</td>
<td>{car, cdr, cons}</td>
<td>(F \cup P)</td>
</tr>
<tr>
<td>(univ. quantif.)</td>
<td>(x - x \approx 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(+ \text{ is } A, C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\leq \text{ is } R, T, A)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x \leq y \lor y \leq x)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x \leq y \rightarrow x + z \leq y + z)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Is the following conjunction:

\[
c \leq d \land d \leq c + \text{car}(\text{cons}(0, c)) \land P(h(c) - h(d)) \land \neg P(0)
\]

satisfiable in \(\mathcal{R} \cup \mathcal{L} \cup \mathcal{E} \)?
Step 1: Purification

Given: ϕ conjunctive quantifier-free formula over $\Sigma_1 \cup \Sigma_2$

Task: Find ϕ_1, ϕ_2 s.t. ϕ_i is a pure Σ_i-formula and $\phi_1 \land \phi_2$ equivalent with ϕ

\[
\begin{align*}
f(s_1, \ldots, s_n) \approx g(t_1, \ldots, t_m) & \quad \mapsto \quad u \approx f(s_1, \ldots, s_n) \land u \approx g(t_1, \ldots, t_m) \\
f(s_1, \ldots, s_n) \not\approx g(t_1, \ldots, t_m) & \quad \mapsto \quad u \approx f(s_1, \ldots, s_n) \land v \approx g(t_1, \ldots, t_m) \land u \not\approx v \\
(\neg)P(\ldots, s_i, \ldots) & \quad \mapsto \quad (\neg)P(\ldots, u, \ldots) \land u \approx s_i \\
(\neg)P(\ldots, s_i[t], \ldots) & \quad \mapsto \quad (\neg)P(\ldots, s_i[t \mapsto u], \ldots) \land u \approx t \\
\text{where } t \approx f(t_1, \ldots, t_n)
\end{align*}
\]

Termination: Obvious

Correctness: $\phi_1 \land \phi_2$ and ϕ equisatisfiable.
Step 1: Purification

\[c \leq d \land d \leq c + \text{car}(\text{cons}(0, c)) \land P(h(c) - h(d)) \land \neg P(0) \]
Step 1: Purification

\[c \leq d \land d \leq c + \text{car(cons}(0, c)) \land P(h(c) - h(d)) \land \neg P(0) \]
Step 1: Purification

\[c \leq d \land d \leq c + \text{car} \left(\text{cons}(0, c) \right) \land P\left(h(c) - h(d) \right) \land \neg P(0) \]
Step 1: Purification

\[c \leq d \land d \leq c + \text{car}(\text{cons}(0, c)) \land P(h(c) - h(d)) \land \neg P(0) \]
Step 1: Purification

\[c \leq d \land d \leq c + \text{car}(\text{cons}(0, c)) \land P(h(c) - h(d)) \land \neg P(0) \]

<table>
<thead>
<tr>
<th>(\mathcal{R})</th>
<th>(\mathcal{L})</th>
<th>(\mathcal{E})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c \leq d)</td>
<td>(c_1 \approx \text{car(cons}(c_5, c)))</td>
<td>(P(c_2))</td>
</tr>
<tr>
<td>(d \leq c + c_1)</td>
<td>(c_2 \approx c_3 - c_4)</td>
<td>(\neg P(c_5))</td>
</tr>
<tr>
<td>(c_2 \approx c_3 - c_4)</td>
<td>(c_5 \approx 0)</td>
<td>(c_3 \approx h(c))</td>
</tr>
<tr>
<td>(c_5 \approx 0)</td>
<td>(c_4 \approx h(d))</td>
<td></td>
</tr>
</tbody>
</table>
Step 1: Purification

\[c \leq d \land d \leq c + \text{car}(\text{cons}(0, c)) \land P(h(c) - h(d)) \land \neg P(0) \]

<table>
<thead>
<tr>
<th>(\mathcal{R})</th>
<th>(\mathcal{L})</th>
<th>(\mathcal{E})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c \leq d)</td>
<td>(c_1 \approx \text{car}(\text{cons}(c_5, c)))</td>
<td>(P(c_2))</td>
</tr>
<tr>
<td>(d \leq c + c_1)</td>
<td></td>
<td>(\neg P(c_5))</td>
</tr>
<tr>
<td>(c_2 \approx c_3 - c_4)</td>
<td></td>
<td>(c_3 \approx h(c))</td>
</tr>
<tr>
<td>(c_5 \approx 0)</td>
<td></td>
<td>(c_4 \approx h(d))</td>
</tr>
<tr>
<td>satisfiable</td>
<td>satisfiable</td>
<td>satisfiable</td>
</tr>
</tbody>
</table>
Step 2: Propagation

\[
c \leq d \land d \leq c + \text{car}(\text{cons}(0, c)) \land P(h(c) - h(d)) \land \neg P(0)
\]

<table>
<thead>
<tr>
<th>(R)</th>
<th>(L)</th>
<th>(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (c \leq d)</td>
<td>2. (d \leq c + c_1)</td>
<td>3. (c_2 \approx c_3 - c_4)</td>
</tr>
<tr>
<td></td>
<td>4. (c_5 \approx 0)</td>
<td>5. (c_3 \approx h(c))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. (c_4 \approx h(d))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. (c_1 \approx \text{car}(\text{cons}(c_5, c)))</td>
<td></td>
<td>8. (P(c_2))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\neg P(c_5))</td>
</tr>
</tbody>
</table>

deduce and propagate equalities between constants entailed by components
Step 2: Propagation

\[c \leq d \land d \leq c + \text{car}(\text{cons}(0, c)) \land P(h(c) - h(d)) \land \neg P(0) \]

<table>
<thead>
<tr>
<th>(R)</th>
<th>(L)</th>
<th>(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c \leq d)</td>
<td>(c_1 \approx \text{car}(\text{cons}(c_5, c)))</td>
<td>(P(c_2))</td>
</tr>
<tr>
<td>(d \leq c + c_1)</td>
<td></td>
<td>(\neg P(c_5))</td>
</tr>
<tr>
<td>(c_2 \approx c_3 - c_4)</td>
<td></td>
<td>(c_3 \approx h(c))</td>
</tr>
<tr>
<td>(c_5 \approx 0)</td>
<td></td>
<td>(c_4 \approx h(d))</td>
</tr>
<tr>
<td>(c_1 \approx c_5)</td>
<td></td>
<td>(c_1 \approx c_5)</td>
</tr>
</tbody>
</table>
Step 2: Propagation

\[c \leq d \land d \leq c + \text{car}(\text{cons}(0, c)) \land P(h(c) - h(d)) \land \neg P(0) \]

<table>
<thead>
<tr>
<th>(\mathcal{R})</th>
<th>(\mathcal{L})</th>
<th>(\mathcal{E})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c \leq d)</td>
<td>(c_1 \approx \text{car}(\text{cons}(c_5, c)))</td>
<td>(P(c_2))</td>
</tr>
<tr>
<td>(d \leq c + c_1)</td>
<td></td>
<td>(\neg P(c_5))</td>
</tr>
<tr>
<td>(c_2 \approx c_3 - c_4)</td>
<td></td>
<td>(c_3 \approx h(c))</td>
</tr>
<tr>
<td>(c_5 \approx 0)</td>
<td></td>
<td>(c_4 \approx h(d))</td>
</tr>
<tr>
<td>(c_1 \approx c_5)</td>
<td>(c_1 \approx c_5)</td>
<td></td>
</tr>
<tr>
<td>(c \approx d)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Step 2: Propagation

\[c \leq d \land d \leq c + \text{car}(\text{cons}(0, c)) \land P(h(c) - h(d)) \land \neg P(0) \]

<table>
<thead>
<tr>
<th>(\mathcal{R})</th>
<th>(\mathcal{L})</th>
<th>(\mathcal{E})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c \leq d)</td>
<td>(c_1 \approx \text{car}(\text{cons}(c_5, c)))</td>
<td>(P(c_2))</td>
</tr>
<tr>
<td>(d \leq c + c_1)</td>
<td></td>
<td>(\neg P(c_5))</td>
</tr>
<tr>
<td>(c_2 \approx c_3 - c_4)</td>
<td></td>
<td>(c_3 \approx h(c))</td>
</tr>
<tr>
<td>(c_5 \approx 0)</td>
<td></td>
<td>(c_4 \approx h(d))</td>
</tr>
<tr>
<td>(c_1 \approx c_5)</td>
<td>(c_1 \approx c_5)</td>
<td>(c \approx d)</td>
</tr>
<tr>
<td>(c \approx d)</td>
<td></td>
<td>(c_3 \approx c_4)</td>
</tr>
</tbody>
</table>
Step 2: Propagation

\[c \leq d \land d \leq c + \text{car}(\text{cons}(0, c)) \land P(h(c) - h(d)) \land \neg P(0) \]

<table>
<thead>
<tr>
<th>(\mathcal{R})</th>
<th>(\mathcal{L})</th>
<th>(\mathcal{E})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c \leq d)</td>
<td>(c_1 \approx \text{car}(\text{cons}(c_5, c)))</td>
<td>(P(c_2))</td>
</tr>
<tr>
<td>(d \leq c + c_1)</td>
<td></td>
<td>(\neg P(c_5))</td>
</tr>
<tr>
<td>(c_2 \approx c_3 - c_4)</td>
<td></td>
<td>(c_3 \approx h(c))</td>
</tr>
<tr>
<td>(c_5 \approx 0)</td>
<td></td>
<td>(c_4 \approx h(d))</td>
</tr>
<tr>
<td>(c_1 \approx c_5)</td>
<td>(c_1 \approx c_5)</td>
<td></td>
</tr>
<tr>
<td>(c \approx d)</td>
<td></td>
<td>(c \approx d)</td>
</tr>
<tr>
<td>(c_2 \approx c_5)</td>
<td></td>
<td>(c_3 \approx c_4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\perp)</td>
</tr>
</tbody>
</table>
The Nelson-Oppen algorithm

ϕ conjunction of literals

Step 1. Purification \(T_1 \cup T_2 \cup \phi \mapsto (T_1 \cup \phi_1) \cup (T_2 \cup \phi_2) \):
where \(\phi_i \) is a pure \(\Sigma_i \)-formula and \(\phi_1 \land \phi_2 \) is equisatisfiable with \(\phi \).

Step 2. Propagation.
The decision procedure for ground satisfiability for \(T_1 \) and \(T_2 \) fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.
The Nelson-Oppen algorithm

\(\phi \) conjunction of literals

Step 1. Purification \(\mathcal{T}_1 \cup \mathcal{T}_2 \cup \phi \mapsto (\mathcal{T}_1 \cup \phi_1) \cup (\mathcal{T}_2 \cup \phi_2) \):

where \(\phi_i \) is a pure \(\Sigma_i \)-formula and \(\phi_1 \land \phi_2 \) is equisatisfiable with \(\phi \).

Step 2. Propagation.

The decision procedure for ground satisfiability for \(\mathcal{T}_1 \) and \(\mathcal{T}_2 \) fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

not problematic; requires linear time

not problematic; termination guaranteed

Sound: if inconsistency detected input unsatisfiable

Complete: under additional assumptions
Implementation

ϕ conjunction of literals

Step 1. Purification: \(\mathcal{T}_1 \cup \mathcal{T}_2 \cup \phi \mapsto (\mathcal{T}_1 \cup \phi_1) \cup (\mathcal{T}_2 \cup \phi_2) \),
where \(\phi_i \) is a pure \(\Sigma_i \)-formula and \(\phi_1 \land \phi_2 \) is equisatisfiable with \(\phi \).

Step 2. Propagation: The decision procedure for ground satisfiability for \(\mathcal{T}_1 \) and \(\mathcal{T}_2 \) fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

How to implement Propagation?

Guessing: guess a maximal set of literals containing the shared variables; check it for \(\mathcal{T}_i \cup \phi_i \) consistency.

Backtracking: identify disjunction of equalities between shared variables entailed by \(\mathcal{T}_i \cup \phi_i \); make case split by adding some of these equalities to \(\phi_1, \phi_2 \). Repeat as long as possible.
Implementation of propagation

Guessing variant

Guess a maximal set of literals containing the shared variables V
(arrangement: $\alpha(V, E) = (\bigwedge_{(u,v) \in E} u \approx v \land \bigwedge_{(u,v) \notin E} u \not\approx v)$, where E equivalence relation); check it for $T_i \cup \phi_i$ consistency.

On the blackboard: Example 10.5 and 10.7 pages 272, 273
Example 10.6 and 10.9 pages 272, 275
from the book “The Calculus of Computation” by A. Bradley and Z. Manna

Advantage: Whenever constraints are represented as Boolean combinations of atoms, one may combine heuristics of SMT solvers with specific features of the theories to be combined to produce the right arrangement efficiently.
Implementation of propagation

Backtracking variant

Identify disjunction of equalities between shared variables entailed by $\mathcal{T}_i \cup \phi_i$; make case split by adding some of these equalities to ϕ_1, ϕ_2.

Repeat as long as possible.

Advantages:

- it works on the non-disjoint case as well

- can be made deterministic for combinations of convex theories

\mathcal{T} convex iff whenever $\mathcal{T} \models \bigwedge_{i=1}^{n} A_i \rightarrow \bigvee_{j=1}^{m} B_j$

there exists j s.t. $\mathcal{T} \models \bigwedge_{i=1}^{n} A_i \rightarrow B_j$
Next Time

Termination: only finitely many shared variables to be identified

Soundness: If procedure answers “unsatisfiable” then ϕ is unsatisfiable

Completeness: If procedure answers “satisfiable” then ϕ is satisfiable

\iff For stably infinite theories (to be defined next time)