Decision Procedures in Verification

Decision Procedures (1)

20.12.2021

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de
Until now:

Syntax (one-sorted signatures vs. many-sorted signatures)

Semantics

Theories (Syntactic vs. Semantics view)

Herbrand models \mapsto The Bernays-Schönfinkel class

Algorithmic Problems

- Decidability/Undecidability
 - Methods: Ordered Resolution with Selection
 - \mapsto Craig Interpolation
 - \mapsto redundancy

Decidable classes:
The Bernays-Schönfinkel class, the Ackermann class, the monadic class
3.2 Deduction problems

Satisfiability w.r.t. a theory
Satisfiability w.r.t. a theory

Example

Let $\Sigma = (\{e/0,*/2,i/1\},\emptyset)$

Let \mathcal{F} consist of all (universally quantified) group axioms:

$$\forall x, y, z \quad x \ast (y \ast z) \approx (x \ast y) \ast z$$

$$\forall x \quad x \ast i(x) \approx e \quad \land \quad i(x) \ast x \approx e$$

$$\forall x \quad x \ast e \approx x \quad \land \quad e \ast x \approx x$$

Question: Is $\forall x, y(x \ast y = y \ast x)$ entailed by \mathcal{F}?
Satisfiability w.r.t. a theory

Example

Let $\Sigma = (\{e/0, \ast/2, i/1\}, \emptyset)$

Let \mathcal{F} consist of all (universally quantified) group axioms:

$$\forall x, y, z \quad x \ast (y \ast z) \approx (x \ast y) \ast z$$
$$\forall x \quad x \ast i(x) \approx e \land i(x) \ast x \approx e$$
$$\forall x \quad x \ast e \approx x \land e \ast x \approx x$$

Question: Is $\forall x, y (x \ast y = y \ast x)$ entailed by \mathcal{F}?

Alternative question:

Is $\forall x, y (x \ast y = y \ast x)$ true in the class of all groups?
Logical theories

Syntactic view

first-order theory: given by a set \mathcal{F} of (closed) first-order Σ-formulae.

the models of \mathcal{F}: $\text{Mod}(\mathcal{F}) = \{ \mathcal{A} \in \Sigma\text{-alg} \mid \mathcal{A} \models G, \text{ for all } G \in \mathcal{F} \}$

Semantic view

given a class \mathcal{M} of Σ-algebras

the first-order theory of \mathcal{M}: $\text{Th}(\mathcal{M}) = \{ G \in F_{\Sigma}(X) \text{ closed} \mid \mathcal{M} \models G \}$
Decidable theories

Let $\Sigma = (\Omega, \Pi)$ be a signature.

\mathcal{M}: class of Σ-algebras. $\mathcal{T} = \text{Th}(\mathcal{M})$ is decidable

iff

there is an algorithm which, for every closed first-order formula ϕ, can
decide (after a finite number of steps) whether ϕ is in \mathcal{T} or not.

\mathcal{F}: class of (closed) first-order formulae.

The theory $\mathcal{T} = \text{Th}(\text{Mod}(\mathcal{F}))$ is decidable

iff

there is an algorithm which, for every closed first-order formula ϕ, can
decide (in finite time) whether $\mathcal{F} \models \phi$ or not.
Examples

Undecidable theories

- $\text{Th}((\mathbb{Z}, \{0, 1, +, *\}, \{\leq\}))$
- Peano arithmetic
- $\text{Th}(\Sigma\text{-alg})$
Peano arithmetic

Peano axioms: \[\forall x \neg(x + 1 \approx 0)\] (zero)
\[\forall x \forall y (x + 1 \approx y + 1 \rightarrow x \approx y)\] (successor)
\[F[0] \land (\forall x (F[x] \rightarrow F[x + 1]) \rightarrow \forall x F[x])\] (induction)
\[\forall x (x + 0 \approx x)\] (plus zero)
\[\forall x, y (x + (y + 1) \approx (x + y) + 1)\] (plus successor)
\[\forall x, y (x * 0 \approx 0)\] (times 0)
\[\forall x, y (x * (y + 1) \approx x * y + x)\] (times successor)

3 * y + 5 > 2 * y expressed as \(\exists z (z \neq 0 \land 3 * y + 5 \approx 2 * y + z)\)

Intended interpretation: \((\mathbb{N}, \{0, 1, +, \times\}, \{\approx, \leq\})\)

(Does not capture true arithmetic by Goedel's incompleteness theorem)
Examples

Undecidable theories

- \(\text{Th}(\mathbb{Z}, \{0, 1, +, \times\}, \{\leq\}) \)
- Peano arithmetic
- \(\text{Th}(\Sigma\text{-alg}) \)

Idea of undecidability proof: Suppose there is an algorithm P that, given a formula in one of the theories above decides whether that formula is valid. We use P to give a decision algorithm for the language

\[\{(G(M), w) | G(M) \text{ is the Gödelisation of a TM } M \text{ that accepts the string } w \} \]

As the latter problem is undecidable, this will show that P cannot exist.
Examples

Undecidable theories

- $\text{Th}(\langle \mathbb{Z}, \{0, 1, +, \ast\}, \{\leq\}\rangle)$
- Peano arithmetic
- $\text{Th}(\Sigma\text{-alg})$

Idea of undecidability proof: (ctd)

1. For $\text{Th}(\langle \mathbb{Z}, \{0, 1, +, \ast\}, \{\leq\}\rangle)$ and Peano arithmetic:
 multiplication can be used for modeling Gödelisation

2. For $\text{Th}(\Sigma\text{-alg})$:
 Given M and w, we create a FOL signature and a set of formulae over this signature encoding the way M functions, and a formula which is valid iff M accepts w.
Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments
Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

- Presburger arithmetic decidable in 3EXPTIME [Presburger’29]
 Signature: (\{0, 1, +\}, \{≈, ≤\}) (no *)
 Axioms \{ (zero), (successor), (induction), (plus zero), (plus successor) \}

- \(\text{Th}(\mathbb{Z}_+) \) \(\mathbb{Z}_+ = (\mathbb{Z}, 0, s, +, ≤) \) the standard interpretation of integers.
Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

- The theory of real numbers (with addition and multiplication) is decidable in 2EXPTIME \([\text{Tarski'30}]\)
Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments
Problems

\(\mathcal{T} \): first-order theory in signature \(\Sigma \); \(\mathcal{L} \) class of (closed) \(\Sigma \)-formulae

Given \(\phi \) in \(\mathcal{L} \), is it the case that \(\mathcal{T} \models \phi \)?

Common restrictions on \(\mathcal{L} \)

<table>
<thead>
<tr>
<th>(\mathcal{L})</th>
<th>Pred = (\emptyset)</th>
<th>({ \phi \in \mathcal{L} \mid \mathcal{T} \models \phi })</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\forall x A(x) \mid A) atomic</td>
<td>word problem</td>
<td></td>
</tr>
</tbody>
</table>
| \(\forall x (A_1 \land \ldots \land A_n \rightarrow B) \mid A_i, B \) atomic | uniform word problem | \(\text{Th}_{\forall \text{Horn}} \)
| \(\forall x C(x) \mid C(x) \) clause | clausal validity problem | \(\text{Th}_{\forall, \text{cl}} \)
| \(\forall x \phi(x) \mid \phi(x) \) unquantified | universal validity problem | \(\text{Th}_{\forall} \)
| \(\exists x A_1 \land \ldots \land A_n \mid A_i \) atomic | unification problem | \(\text{Th}_{\exists} \)
| \(\forall x \exists x A_1 \land \ldots \land A_n \mid A_i \) atomic | unification with constants | \(\text{Th}_{\forall \exists} \)
\mathcal{T}-validity vs. \mathcal{T}-satisfiability

\mathcal{T}-validity: Let \mathcal{T} be a first-order theory in signature Σ
Let \mathcal{L} be a class of (closed) Σ-formulae
Given ϕ in \mathcal{L}, is it the case that $\mathcal{T} \models \phi$?

Remark: $\mathcal{T} \models \phi$ iff $\mathcal{T} \cup \neg \phi$ unsatisfiable

Every \mathcal{T}-validity problem has a dual \mathcal{T}-satisfiability problem:

\mathcal{T}-satisfiability: Let \mathcal{T} be a first-order theory in signature Σ
Let \mathcal{L} be a class of (closed) Σ-formulae
\[\neg \mathcal{L} = \{ \neg \phi \mid \phi \in \mathcal{L} \} \]
Given ψ in $\neg \mathcal{L}$, is it the case that $\mathcal{T} \cup \psi$ is satisfiable?
\mathcal{T}-validity vs. \mathcal{T}-satisfiability

Common restrictions on $\mathcal{L} / \neg\mathcal{L}$

<table>
<thead>
<tr>
<th>\mathcal{L}</th>
<th>$\neg\mathcal{L}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${\forall x A(x) \mid A \text{ atomic}}$</td>
<td>${\exists x \neg A(x) \mid A \text{ atomic}}$</td>
</tr>
<tr>
<td>${\forall x (A_1 \land \ldots \land A_n \rightarrow B) \mid A_i, B \text{ atomic}}$</td>
<td>${\exists x (A_1 \land \ldots \land A_n \land \neg B) \mid A_i, B \text{ atomic}}$</td>
</tr>
<tr>
<td>$\forall x \bigvee L_i \mid L_i \text{ literals}$</td>
<td>$\exists x \bigwedge L_i^\prime \mid L_i^\prime \text{ literals}$</td>
</tr>
<tr>
<td>$\forall x \phi(x) \mid \phi(x) \text{ unquantified}$</td>
<td>$\exists x \phi'(x) \mid \phi'(x) \text{ unquantified}$</td>
</tr>
</tbody>
</table>

validity problem for universal formulae
ground satisfiability problem
\mathcal{T}-validity vs. \mathcal{T}-satisfiability

Common restrictions on $\mathcal{L} / \neg \mathcal{L}$

<table>
<thead>
<tr>
<th>\mathcal{L}</th>
<th>$\neg \mathcal{L}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\forall x A(x) \mid A$ atomic</td>
<td>$\exists x \neg A(x) \mid A$ atomic</td>
</tr>
<tr>
<td>$\forall x (A_1 \land \ldots \land A_n \rightarrow B) \mid A_i, B$ atomic</td>
<td>$\exists x (A_1 \land \ldots \land A_n \land \neg B) \mid A_i, B$ atomic</td>
</tr>
<tr>
<td>$\forall x \lor L_i \mid L_i$ literals</td>
<td>$\exists x \land L'_i \mid L'_i$ literals</td>
</tr>
<tr>
<td>$\forall x \phi(x) \mid \phi(x)$ unquantified</td>
<td>$\exists x \phi'(x) \mid \phi'(x)$ unquantified</td>
</tr>
</tbody>
</table>

Validity problem for universal formulae
ground satisfiability problem

In what follows we will focus on the problem of checking the satisfiability of conjunctions of ground literals.
\(\mathcal{T} \)-validity vs. \(\mathcal{T} \)-satisfiability

\[\mathcal{T} \models \forall x A(x) \quad \text{iff} \quad \mathcal{T} \cup \exists x \neg A(x) \text{ unsatisfiable} \]

\[\mathcal{T} \models \forall x (A_1 \land \cdots \land A_n \rightarrow B) \quad \text{iff} \quad \mathcal{T} \cup \exists x (A_1 \land \cdots \land A_n \land \neg B) \text{ unsatisfiable} \]

\[\mathcal{T} \models \forall x (\bigvee_{i=1}^{n} A_i \lor \bigvee_{j=1}^{m} \neg B_j) \quad \text{iff} \quad \mathcal{T} \cup \exists x (\neg A_1 \land \cdots \land \neg A_n \land B_1 \land \cdots \land B_m) \text{ unsatisfiable} \]

\(\mathcal{T} \)-satisfiability vs. Constraint Solving

The field of Constraint Solving also deals with satisfiability problems.

But be careful:

- in Constraint Solving one is interested if a formula is satisfiable in a given, fixed model of \(\mathcal{T} \).

- in \(\mathcal{T} \)-satisfiability one is interested if a formula is satisfiable in any model of \(\mathcal{T} \) at all.
3.3. Theory of Uninterpreted Function Symbols

Why?

- Reasoning about equalities is important in automated reasoning
- Applications to program verification
 (approximation: abstract from additional properties)
Application: Compiler Validation

Example: prove equivalence of source and target program

1: y := 1
2: if z = x*x*x
3: then y := x*x + y
4: endif
5: y := R1+1

To prove: (indexes refer to values at line numbers)

\[
y_1 \approx 1 \land [(z_0 \approx x_0 \ast x_0 \ast x_0 \land y_3 \approx x_0 \ast x_0 + y_1) \lor (z_0 \not\approx x_0 \ast x_0 \ast x_0 \land y_3 \approx y_1)] \land \\
y_1' \approx 1 \land R1_2 \approx x_0' \ast x_0' \land R2_3 \approx R1_2 \ast x_0' \land \\
\land [(z_0' \approx R2_3 \land y_5' \approx R1_2 + 1) \lor (z_0' \not\approx R2_3 \land y_5' \approx y_1')] \land \\
x_0 \approx x_0' \land y_0 \approx y_0' \land z_0 \approx z_0' \implies x_0 \approx x_0' \land y_3 \approx y_5' \land z_0 \approx z_0'
\]
Possibilities for checking it

(1) **Abstraction.**
Consider * to be a “free” function symbol (forget its properties). Test it property can be proved in this approximation. If so, then we know that implication holds also under the normal interpretation of *.

(2) **Reasoning about formulae in fragments of arithmetic.**
Uninterpreted function symbols

Let $\Sigma = (\Omega, \Pi)$ be arbitrary

Let $\mathcal{M} = \Sigma\text{-alg}$ be the class of all Σ-structures

The theory of uninterpreted function symbols is $\text{Th}(\Sigma\text{-alg})$ the family of all first-order formulae which are true in all Σ-algebras.

in general undecidable

Decidable fragment:

e.g. the class $\text{Th}_\forall(\Sigma\text{-alg})$ of all universal formulae which are true in all Σ-algebras.
Uninterpreted function symbols

Assume $\Pi = \emptyset$ (and \approx is the only predicate)

In this case we denote the theory of uninterpreted function symbols by $UIF(\Sigma)$ (or UIF when the signature is clear from the context).

This theory is sometimes called the theory of free functions and denoted Free(Σ)
Theorem 3.3.1

The following are equivalent:

1. testing validity of universal formulae w.r.t. UIF is decidable
2. testing validity of (universally quantified) clauses w.r.t. UIF is decidable

Proof: Follows from the fact that any universal formula is equivalent to a conjunction of (universally quantified) clauses.