Exercise 9.2 Prove the following equivalences of CTL formulae:

1. $\neg E O F \equiv ADT F$

 $\neg E O F$ is an abbreviation for the formula $\neg E O T G$.

 Therefore, $ADT F \equiv \neg E O T F \equiv \neg E O F$.

2. $E (F U G) \equiv G V (F \land E O E (F U G))$

 We show that in every transition system $T = (S, \rightarrow, L)$ and every $s \in S$,
 $(T, s) \models E (F U G)$ if and only if $(T, s) \models G V (F \land E O E (F U G))$:

 Proof. Let T be a transition system and s be a state of T.

 $(T, s) \models E (F U G)$ if and only if there exists a computation $\pi = s_0 \rightarrow s_1 \rightarrow \cdots$ where $s_0 = s$ such that

 $\exists \mu \geq 0$ with $(T, s_0) \models G$ and
 $\forall k \in 0, \ldots, \mu - 1 : (T, s_k) \models F$.

 Therefore, $E (F U G) \equiv G V (F \land E O E (F U G))$ if and only if

 $(T, s) \models G$ or $(T, s) \models F$ and $(T, s) \models E O E (F U G)$

 if and only if $(T, s) \models G$ or $(T, s) \models F$ and there exists
 $s_i \in S \cup s \downarrow s_i$ such that $(T, s_i) \models E (F U G)$

 if and only if $(T, s) \models G$ or $(T, s) \models F$ and there exists
 $s_i \in S \cup s \downarrow s_i$ such that there exists
 $T = s_i \rightarrow s_{i+1} \rightarrow \cdots$ for which
 $\exists \mu \geq 1 : (T, s_0) \models G$ and
 $\forall k \in 1, \ldots, \mu - 1 : (T, s_k) \models F$.

 It is easy to check that (\forall) and (\exists) are equivalent.
(3) \[\text{EOF} = F \land \text{EOF} \]

Proof: We show that for every transition system \(T \) and every state \(s \) of \(T \),
\[(T, s) \not\in \text{EOF} \quad \text{iff} \quad (T, s) \not\in F \land \text{EOEOF}. \]

Let \(T \) be a transition system and \(s \) be a state of \(T \).

\[(T, s) \not\in \text{EOF} \quad \text{iff} \quad \text{there exists a computation } T = S_0 \rightarrow S_1 \rightarrow \ldots \text{ with } S_0 = s \]
\[\text{such that } \#u > 0 : (T, Sw) = F. \]

\[(T, s) \not\in F \land \text{EOEOF} \quad \text{iff} \quad \exists (T, s) = F \text{ and } \]
\[(T, s) \not\in \text{EOF} \]
\[\text{iff} \quad (T, s) = F \text{ and } \]
\[\text{there exists } S_1 \text{ with } s \rightarrow S_1 \text{ such that } (T, S_1) = \text{EOF}. \]
\[\text{iff} \quad (T, s) = FF \text{ and } \]
\[\text{there exists } S_1 \text{ with } s \rightarrow S_1 \text{ and } \]
\[\text{there exists a computation } T = S_1 \rightarrow S_2 \rightarrow \ldots \]
\[\text{such that } \#u > 1 : (T, Sw) = F. \]
\[\text{iff} \quad \text{there exists a computation } T = S_0 \rightarrow S_1 \rightarrow S_2 \rightarrow \ldots \]
\[\text{such that } (T, S_0) = (T, s) = FF \text{ and } \]
\[\#u > 1 : (T, Sw) = F. \]
\[\text{iff} \quad \text{there exists a computation } T = S_0 \rightarrow S_1 \rightarrow \ldots \text{ with } S_0 = s \]
\[\text{such that } \#u > 0 : (T, Sw) = F. \]
\[\text{iff} \quad (T, s) = \text{EOF}. \]
(4) \(TA(FUG) \equiv E(7G \cup (7F \setminus 7G)) \cup E07G .\)

Proof: We show that in every transition system \(T=(S, \rightarrow, L) \) and every \(S \in S \):

\((T,S) \equiv TA(FUG) \) \iff \((T,S) \equiv E(7G \cup (7F \setminus 7G)) \cup E07G .\)

Let \(T \) be a transition system and \(S \) be a state of \(T .\)

\((T,S) \equiv TA(FUG) \) \iff

- It is not true that for all computations \(\Pi=S_0 \rightarrow S_1 \rightarrow \ldots \) with \(S_0=S \) there is an \(n \geq 0 \) such that \(n \in \mathbb{Z} \) and \(T(S_0) = FG \) and \(T(S_n) = FG \)

 \iff there exists a computation \(\Pi=S_0 \rightarrow S_1 \rightarrow \ldots \) with \(S_0=S \) such that for all \(n \geq 0 \) \((T(S_n)) = FG \) or \(\exists k \in \{0, \ldots, n \} : (T,S) = TF \)

 \iff there exists a computation \(\Pi=S_0 \rightarrow S_1 \rightarrow \ldots \) with \(S_0=S \) such that either for all \(n \geq 0 \) \((T(S_n)) = FG \) or there exists \(n_0 \geq 0 \) such that \((T(S_n)) = FG \) for all \(n \geq n_0 \) and \(\exists k \in \{0, \ldots, n_0 \} : (T,S) = TF \)

- Case distinction made clear.

 - If \(S \) follows with \((T(S_n)) = FG \) we choose the smallest such \(n_0 \)

 - Then (1) holds.

\(\exists (A \lor B) \equiv \exists A \lor \exists B \)

\[(A \lor B) \equiv (A \land B) \]

\[(A \land B) \equiv (A \lor B) \]

4. There exists a computation \(\Pi=S_0 \rightarrow S_1 \rightarrow \ldots \) with \(S_0=S \) such that for all \(n \geq 0 \) \((T(S_n)) = FG \) or there exists \(n_0 \geq 0 \) with \((T(S_n)) = FG \) for all \(n \geq n_0 \) and \(\exists k \in \{0, \ldots, n_0 \} : (T,S) = TF .\)
\((T,S) = E(7G \cup (7F \land 7G)) \lor E(7G)\)

iff \((T,S) = E(7G \cup (7F \land 7G))\) or \((T,S) = E(7G)\).

iff there exists a computation \(T = S_0 \rightarrow S_1 \rightarrow \cdots \) with \(S_0 = S\) such that \(\forall u \geq 0\) \((T, Su) \neq 7G\),

or

there exists a computation \(T = S_0 \rightarrow S_1 \rightarrow \cdots\) with \(S_0 = S\) such that \(\exists n_0 \geq 0\) such that \((T, S_{n_0}) = 7F \land 7G\),

and \(\forall k \leq n_0\) \((T, S_k) = 7G\).

We now show that \(\oplus \iff \ominus\).

\(\oplus \Rightarrow \ominus\) \(\Box\) If there exists a computation \(T = S_0 \rightarrow S_1 \rightarrow \cdots\) with \(S_0 = S\) such that \(\forall u \geq 0\) \((T, Su) = 7G\), then \(\ominus\) holds.

Assume now that there exists a computation \(T = S_0 \rightarrow S_1 \rightarrow \cdots\) with \(S_0 = S\) such that \(\exists n_0\) with \((T, S_{n_0}) \neq 7G\), \((T, Su) \neq 7G\) for all \(u < n_0\), and \(\exists k \leq n_0 - 1\) such that \((T, S_k) = 7F\).

We choose \(n_0\) to be the \(k \leq n_0 - 1\) for which \((T, S_k) = 7F\).

Then \((T, S_{n_0}) = 7G\) because \(k \leq n_0\), \(n_0 \neq 7F \land 7G\).

In addition, we know that for all \(k \leq n_0 \leq n_0 - 1\), we have \((T, S_k) = 7G\). Thus \(\ominus\) holds also in this case.

\(\ominus \Rightarrow \oplus\) \(\Box\) If there exists a computation \(T = S_0 \rightarrow S_1 \rightarrow \cdots\) with \(S_0 = S\) such that \(\forall u \geq 0\) \((T, Su) \neq 7G\), then \(\oplus\) holds.

This is not the case and \(\ominus\).

Assume now that there exists a computation \(T = S_0 \rightarrow S_1 \rightarrow \cdots\) with \(S_0 = S\) such that \(\exists n_0\) such that \((T, S_{n_0}) \neq 7F \land 7G\) and \(\forall k \leq n_0\) \((T, S_k) = 7G\).

Then \(\exists n_0\) such that \((T, S_{n_0}) \neq 7F\), and \(\forall u < n_0\) \((T, Su) = 7G\).

\(\exists k \leq n_0\ \exists u \leq n_{0-1}\) such that \((T, S_k) = 7F\).

Thus \(\ominus\) holds also in this case.