Formal Specification and Verification

Deductive Verification: An introduction

2.02.2022

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de
Overview

Introduction to deductive verification

Idea: Succinct representation of sets of states and of transitions between states

- **Set of states:** Formula (property of all states in the set)
- **Transitions:** Formulae (relation between the old values of the variables and the new values of the variables)
Programs as transition systems

Verification problem: Program + Description of the “bad” states

Succinct representation:

\[P = (V, pc, Init, \mathcal{R}) \quad \phi_{err} \]

- \(V \) - finite (ordered) set of program variables
- \(pc \) - program counter variable (\(pc \) included in \(V \))
- \(Init \) - initiation condition given by formula over \(V \)
- \(\mathcal{R} \) - a finite set of transition relations
 - Every transition relation \(\rho \in \mathcal{R} \) is given by a formula over the variables \(V \) and their primed versions \(V' \)
- \(\phi_{err} \) - an error condition given by a formula over \(V \)
A program computation is a sequence of states $s_1 s_2 \ldots$ such that:

- The first element is an initial state, i.e., $s_1 \models \text{Init}$
- Each pair of consecutive states (s_i, s_{i+1}) is connected by a program transition, i.e., $(s_i, s_{i+1}) \models \rho R$.
- If the sequence is finite then the last element does not have any successors i.e., if the last element is s_n, then there is no state s such that $(s_n, s) \models \rho R$.

Computation
Correctness: Safety

- A state is reachable if it occurs in some program computation.
- A program is safe if no error state is reachable.
- ... if and only if no error state lies in ϕ_{reach},
 \[\phi_{err} \land \phi_{reach} \models \bot \]
 where ϕ_{reach} = set of program states which are reachable from some initial state.
- ... if and only if no initial state lies in $\phi_{reach^{-1}}$,
 \[Init \land \phi_{reach^{-1}}(\phi_{err}) \models \bot \]
 where $\phi_{reach^{-1}}(\phi_{err})$ = set of program states from which some state in ϕ_{err} is reachable.
Let ϕ be a formula over V

Let ρ be a formula over V and V'

Define a post-condition function $post$ by:

$$post(\phi, \rho) = \exists V'' : \phi[V''/V] \land \rho[V''/V][V/V']$$

An application $post(\phi, \rho)$ computes the image of the set ϕ under the relation ρ.

$post^*(\phi, \rho) = n$-fold application of post to ϕ under ρ

Characterize ϕ_{reach} using iterates of post:

$$\phi_{reach} = Init \lor post(Init, \rho_{\mathcal{R}}) \lor post(post(Init, \rho_{\mathcal{R}}), \rho_{\mathcal{R}}) \lor \ldots$$

$$= \bigvee_{i \geq 0} post^i(Init, \rho_{\mathcal{R}})$$
Problem

Assume there exists $m \in \mathbb{N}$ such that

$$\bigvee_{i=0}^{m} \text{post}^i(\text{Init}, \rho_{\mathcal{R}}) = \bigvee_{i=0}^{m+1} \text{post}^i(\text{Init}, \rho_{\mathcal{R}})$$

i.e. fixpoint reached.

Let $\phi_{\text{reach}} := \bigvee_{i=1}^{m} \text{post}^i(\text{Init}, \rho_{\mathcal{R}})$

How to check whether error states are reachable?

$\phi_{\text{reach}}, \phi_{\text{err}}$ are formulae.

No error states are reachable iff $\phi_{\text{reach}} \land \phi_{\text{err}} \models \bot$

Both for forward and for backward reachability:

Reasoning modulo theories
Reasoning modulo theories

Goal: Devise efficient methods for reasoning modulo theories

SAT checking (can reduce entailment to checking satisfiability)

Example:
Check whether conjunctions of constraints in linear arithmetic is satisfiable: classical methods exist, e.g. simplex.
Check whether a conjunction of equalities and disequalities of ground terms is satisfiable: methods exist (e.g. congruence closure)

Challenge: efficient methods for handling arbitrary Boolean combinations of constraints in such theories.

Possible solution: Extend the DPLL method to reasoning modulo theories

↔ Decision Procedures for Verification
Reminder: The DPLL algorithm

State: \(M \parallel F, \)

where:

- \(M \) partial assignment (sequence of literals),

 some literals are annotated \((L^d: \text{decision literal})\)

- \(F \) clause set.
A succinct formulation

UnitPropagation

\[M \parallel F, C \lor L \Rightarrow M, L \parallel F, C \lor L \]

if \(M \models \neg C \), and \(L \) undefined in \(M \)

Decide

\[M \parallel F \Rightarrow M, L^d \parallel F \]

if \(L \) or \(\neg L \) occurs in \(F \), \(L \) undefined in \(M \)

Fail

\[M \parallel F, C \Rightarrow \text{Fail} \]

if \(M \models \neg C \), \(M \) contains no decision literals

Backjump

\[M, L^d, N \parallel F \Rightarrow M, L' \parallel F \]

if there is some clause \(C \lor L' \) s.t.:

\[F \models C \lor L', M \models \neg C, \]
\[L' \text{ undefined in } M \]
\[L' \text{ or } \neg L' \text{ occurs in } F. \]
Some problems are more naturally expressed in richer logics than just propositional logic, e.g:

- Software/Hardware verification needs reasoning about equality, arithmetic, data structures, ...

SMT consists of deciding the satisfiability of a ground 1st-order formula with respect to a background theory T.
SAT Modulo Theories (SMT)

The “very eager” approach to SMT

Method:
– translate problem into equisatisfiable propositional formula;
– use off-the-shelf SAT solver

• Why “eager”?
 Search uses all theory information from the beginning

• Characteristics:
 + Can use best available SAT solver
 – Sophisticated encodings are needed for each theory
 – Sometimes translation and/or solving too slow

Main Challenge for alternative approaches is to combine:
- DPLL-based techniques for handling the boolean structure
- Efficient theory solvers for conjunctions of ℓ-literals
SAT Modulo Theories (SMT)

“Lazy” approaches to SMT: Idea

Example: consider $T = \text{UIF}$ and the following set of clauses:

$$
\begin{align*}
f(g(a)) \not\approx f(c) \lor \neg g(a) \approx d, \\
\neg P_1 \\
\end{align*}
\begin{align*}
g(a) \approx c, \\
P_2 \\
\end{align*}
\begin{align*}
c \not\approx d \\
P_3 \\
\end{align*}
$$

1. Send $\{\neg P_1 \lor P_2, \ P_3, \neg P_4\}$ to SAT solver

SAT solver returns model $[\neg P_1, P_3, \neg P_4]$.

Theory solver says $\neg P_1 \land P_3 \land \neg P_4$ is T-inconsistent.

2. Send $\{\neg P_1 \lor P_2, \ P_3, \neg P_4, \ P_1 \lor \neg P_3 \lor P_4\}$ to SAT solver

SAT solver returns model $[P_1, P_2, P_3, \neg P_4]$.

Theory solver says $P_1 \land P_2 \land P_3 \land \neg P_4$ is T-inconsistent.

3. Send $\{\neg P_1 \lor P_2, \ P_3, \neg P_4, \ P_1 \lor \neg P_3 \lor P_4, \ P_1 \lor \neg P_2 \lor \neg P_3 \lor P_4\}$ to SAT solver

SAT solver says UNSAT.
Problems

It is not guaranteed that the fixpoint is reached in a finite/bounded number of steps.
Problems

It is not guaranteed that the fixpoint is reached in a finite/bounded number of steps.

Need to analyze alternative solutions
Verification

Modeling/Formalization

System Specification

Is the system safe?

Is safety guaranteed on all paths of length < n which start in an initial state?

Is the safety property an invariant of the system?
Can we generate an invariant which implies safety?

Invariant checking/ BMC Model Checking Abstraction/ Refinement
Verification

Modeling/Formalization

System Specifications

Complex theories

Automated reasoning
- full theory
- abstraction of theory

Interpolation
- use interpolants for refining abstraction

Invariant checking/ BMC
Model Checking
Abstraction/ Refinement
Abstraction/Refinement

Concrete program

Abstract program

feasible path

location reachable

feasible path

location unreachable

check feasibility

⇒

conjunction of constraints: $\phi(1) \land Tr(1, 2) \land \cdots \land Tr(n-1, n) \land \neg\text{safe}(n)$

- satisfiable: feasible path

- unsatisfiable: refine abstract program s.t. the path is not feasible

[McMillan 2003-2006] use ‘local causes of inconsistency’

⇒ compute interpolants
Invariant checking; Bounded model checking

S specification $\mapsto \Sigma_S$ signature of S; T_S theory of S; T_S transition system

$\text{Init}(\overline{x}); \rho_R(\overline{x}, \overline{x}')$

Given: Safe(x) formula (e.g. safety property)

- Invariant checking

 (1) $T_S \models \text{Init}(\overline{x}) \rightarrow \text{Safe}(\overline{x})$ (Safe holds in the initial state)

 (2) $T_S \models \text{Safe}(\overline{x}) \land \rho_R(\overline{x}, \overline{x}') \rightarrow \text{Safe}(\overline{x}')$ (Safe holds before \Rightarrow holds after update)

- Bounded model checking (BMC):

 Check whether, for a fixed k, unsafe states are reachable in at most k steps, i.e. for all $0 \leq j \leq k$:

 $T_S \models \text{Init}(x_0) \land \rho_R(x_0, x_1) \land \cdots \land \rho_R(x_{j-1}, x_j) \land \neg\text{Safe}(x_j) \rightarrow \bot$
Reasoning modulo theories

Goal: Devise efficient methods for reasoning modulo theories
Problems

- First order logic is undecidable
- In applications, theories do not occur alone
 ⟷ need to consider combinations of theories

+ Fragments of theories occurring in applications are often decidable
+ Often provers for the component theories can be combined efficiently
Probleme

- First order logic is undecidable
- In applications, theories do not occur alone
 \[\rightarrow\] need to consider combinations of theories

+ Fragments of theories occurring in applications are often decidable
+ Often provers for the component theories can be combined efficiently

Important goals:

- Identify decidable theories which are important in applications (Extensions/Combinations) possibly with low complexity
- Development & Implementation of efficient Decision Procedures
Example: ETCS Case Study (AVACS project)

Simplified version of ETCS Case Study [Jacobs, VS’06, Faber, Jacobs, VS’07]

Number of trains: \(n \geq 0 \) \(\mathbb{Z} \)

Minimum and maximum speed of trains: \(0 \leq \text{min} < \text{max} \) \(\mathbb{R} \)

Minimum secure distance: \(l_{\text{alarm}} > 0 \) \(\mathbb{R} \)

Time between updates: \(\Delta t > 0 \) \(\mathbb{R} \)

Train positions before and after update: \(\text{pos}(i), \text{pos}'(i) : \mathbb{Z} \rightarrow \mathbb{R} \)
Example: ETCS Case Study (AVACS project)

Simplified version of ETCS Case Study [Jacobs, VS’06, Faber, Jacobs, VS’07]

Update \((pos, pos')\) :
- \(\forall i \ (i = 0 \rightarrow pos(i) + \Delta t \cdot \text{min} \leq pos'(i) \leq pos(i) + \Delta t \cdot \text{max})\)
- \(\forall i \ (0 < i < n \land pos(i - 1) > 0 \land pos(i - 1) - pos(i) \geq l_{\text{alarm}} \rightarrow pos(i) + \Delta t \cdot \text{min} \leq pos'(i) \leq pos(i) + \Delta t \cdot \text{max})\)

...
Example: ETCS Case Study (AVACS project)

Safety property: No collisions

\[
\text{Safe}(\text{pos}) : \forall i, j (i < j \rightarrow \text{pos}(i) > \text{pos}(j))
\]

Inductive invariant:

\[
\text{Safe}(\text{pos}) \land \text{Update}(\text{pos}, \text{pos'}) \land \neg \text{Safe}(\text{pos'}) \models T_S \perp
\]

where \(T_S \) is the extension of the (disjoint) combination \(\mathbb{R} \cup \mathbb{Z} \) with two functions, \(\text{pos}, \text{pos'} : \mathbb{Z} \rightarrow \mathbb{R} \)

Problem: Satisfiability test for quantified formulae in complex theory
More complex ETCS Case studies

[Faber, Jacobs, VS, 2007]

- Take into account also:
 - Emergency messages
 - Durations

- Specification language: CSP-OZ-DC
 - Reduction to satisfiability in theories for which decision procedures exist

- **Tool chain:** [Faber, Ihlemann, Jacobs, VS]
 CSP-OZ-DC \(\mapsto\) Transition constr. \(\mapsto\) Decision procedures (H-PILoT)
Example 2: Parametric topology

- **Complex track topologies** [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:
- No cycles
- In-degree (out-degree) of associated graph at most 2.
Parametricity and modularity

- **Complex track topologies** [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:
- No cycles
- in-degree (out-degree) of associated graph at most 2.

Approach:
- Decompose the system in trajectories (linear rail tracks; may overlap)
- **Task 1:** - Prove safety for trajectories with incoming/outgoing trains
 - Conclude that for control rules in which trains have sufficient freedom (and if trains are assigned unique priorities) safety of all trajectories implies safety of the whole system
- **Task 2:** - General constraints on parameters which guarantee safety
Parametricity and modularity

- **Complex track topologies** [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:
- No cycles
- in-degree (out-degree) of associated graph at most 2.

Data structures:
- p_1: trains
- 2-sorted pointers
- p_2: segments
- scalar fields ($f:p_i \to \mathbb{R}$, $g:p_i \to \mathbb{Z}$)
- updates efficient decision procedures (H-PiLoT)
Example: Controller for line track (RBC)

CSP part: specifies the processes and their interdependency.

The RBC system passes repeatedly through four phases, modeled by events:

- **updSpd** (speed update)
- **req** (request update)
- **alloc** (allocation update)
- **updPos** (position update)

Between these events, trains may leave or enter the track (at specific segments), modeled by the events **leave** and **enter**.
Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init formulae, update rules.

- **1. Data classes** declare function symbols that can change their values during runs of the system

Data structures:

- **2-sorted pointers**

 train: trains

 segm: segments
Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init formulae, update rules.

- **1. Data classes** declare function symbols that can change their values during runs of the system, and are used in the OZ part of the specification.

- **2. Axioms:** define properties of the data structures and system parameters which do not change
 - $g_{max} : \mathbb{R}$ (the global maximum speed),
 - $dec_{max} : \mathbb{R}$ (the maximum deceleration of trains),
 - $d : \mathbb{R}$ (a safety distance between trains),
 - Properties of the data structures used to model trains/segments
Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init formulae, update rules.

- **3. Init schema.** describes the initial state of the system.
 - trains - doubly-linked list; placed correctly on the track segments
 - all trains respect their speed limits.

- **4. Update rules** specify updates of the state space executed when the corresponding event from the CSP part is performed.

 Example: Speed update
Modular Verification

<table>
<thead>
<tr>
<th>COD</th>
<th>$\mapsto \Sigma_S$ signature of S; \mathcal{T}_S theory of S; T_S transition constraint system</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>specification Init(\overline{x}); Update($\overline{x}, \overline{x}'$)</td>
</tr>
</tbody>
</table>

Given: Safe(x) formula (e.g. safety property)

- **Invariant checking**

 \[
 (1) \models_{\mathcal{T}_S} \text{Init}(\overline{x}) \rightarrow \text{Safe}(\overline{x}) \quad \text{(Safe holds in the initial state)}
 \]

 \[
 (2) \models_{\mathcal{T}_S} \text{Safe}(\overline{x}) \land \text{Update}(\overline{x}, \overline{x}') \rightarrow \text{Safe}(\overline{x}') \quad \text{(Safe holds before \Rightarrow holds after update)}
 \]

- **Bounded model checking (BMC):**

 Check whether, for a fixed k, unsafe states are reachable in at most k steps, i.e. for all $0 \leq j \leq k$:

 \[
 \text{Init}(x_0) \land \text{Update}_1(x_0, x_1) \land \cdots \land \text{Update}_n(x_{j-1}, x_j) \land \neg\text{Safe}(x_j) \models_{\mathcal{T}_S} \bot
 \]
Trains on a linear track

Example 1: Speed Update

\[\text{pos}(t) < \text{length}(\text{segm}(t)) - d \rightarrow 0 \leq \text{spd}'(t) \leq \text{lmax}(\text{segm}(t)) \]

\[\text{pos}(t) \geq \text{length}(\text{segm}(t)) - d \land \text{alloc}(\text{next}_s(\text{segm}(t))) = \text{tid}(t) \rightarrow 0 \leq \text{spd}'(t) \leq \min(\text{lmax}(\text{segm}(t)), \text{lmax}(\text{next}_s(\text{segm}(t)))) \]

\[\text{pos}(t) \geq \text{length}(\text{segm}(t)) - d \land \text{alloc}(\text{next}_s(\text{segm}(t))) \neq \text{tid}(t) \rightarrow \text{spd}'(t) = \max(\text{spd}(t) - \text{decmax}, 0) \]
Trains on a linear track

Example 1: Speed Update
\[\begin{align*}
pos(t) < \text{length}(\text{segm}(t)) - d &\implies 0 \leq \text{spd}'(t) \leq \text{lmax}(\text{segm}(t)) \\
pos(t) \geq \text{length}(\text{segm}(t)) - d &\land \text{alloc}(\text{next}_s(\text{segm}(t))) = \text{tid}(t) \\
&\implies 0 \leq \text{spd}'(t) \leq \min(\text{lmax}(\text{segm}(t)), \text{lmax}(\text{next}_s(\text{segm}(t)))) \\
pos(t) \geq \text{length}(\text{segm}(t)) - d &\land \text{alloc}(\text{next}_s(\text{segm}(t))) \neq \text{tid}(t) \\
&\implies \text{spd}'(t) = \max(\text{spd}(t) - \text{decmax}, 0)
\end{align*}\]

Proof task:
\[\text{Safe}(\text{pos, next, prev, spd}) \land \text{SpeedUpdate}(\text{pos, next, prev, spd, spd}') \implies \text{Safe}(\text{pos}', \text{next, prev, spd}')\]
Incoming and outgoing trains

Example 2: Enter Update (also updates for segm’, spd’, pos’, train’)

Assume: \(s_1 \neq \text{null}_s, t_1 \neq \text{null}_t, \text{train}(s) \neq t_1, \text{alloc}(s_1) = \text{idt}(t_1) \)

\(t \neq t_1, \text{ids}(\text{segm}(t)) < \text{ids}(s_1), \text{next}_t(t) = \text{null}_t, \text{alloc}(s_1) = \text{tid}(t_1) \rightarrow \text{next}'(t) = t_1 \land \text{next}'(t_1) = \text{null}_t \)

\(t \neq t_1, \text{ids}(\text{segm}(t)) < \text{ids}(s_1), \text{alloc}(s_1) = \text{tid}(t_1), \text{next}_t(t) \neq \text{null}_t, \text{ids}(\text{segm}(ext{next}_t(t))) \leq \text{ids}(s_1) \)

\(\rightarrow \text{next}'(t) = \text{next}_t(t) \)

\(\ldots \)

\(t \neq t_1, \text{ids}(\text{segm}(t)) \geq \text{ids}(s_1) \rightarrow \text{next}'(t) = \text{next}_t(t) \)
Incoming and outgoing trains

Example 2: Enter Update (also updates for segm', spd', pos', train')

Assume: $s_1 \neq \text{null}_s$, $t_1 \neq \text{null}_t$, $\text{train}(s) \neq t_1$, $\text{alloc}(s_1) = \text{idt}(t_1)$

$t \neq t_1$, $\text{ids}(ext{segm}(t)) < \text{ids}(s_1)$, $\text{next}_t(t) = \text{null}_t$, $\text{alloc}(s_1) = \text{tid}(t_1)$ → $\text{next}'(t) = t_1$ ∧ $\text{next}'(t_1) = \text{null}_t$

$t \neq t_1$, $\text{ids}(ext{segm}(t)) < \text{ids}(s_1)$, $\text{alloc}(s_1) = \text{tid}(t_1)$, $\text{next}_t(t) \neq \text{null}_t$, $\text{ids}(ext{segm}(\text{next}_t(t))) \leq \text{ids}(s_1)$ → $\text{next}'(t) = \text{next}_t(t)$

...$t \neq t_1$, $\text{ids}(ext{segm}(t)) \geq \text{ids}(s_1)$ → $\text{next}'(t) = \text{next}_t(t)$
Safety property

Safety property we want to prove:
no two different trains ever occupy the same track segment:

\[(\text{Safe}) \quad \forall t_1, t_2 \quad \text{segm}(t_1) = \text{segm}(t_2) \implies t_1 = t_2\]

In order to prove that (Safe) is an invariant of the system, we need to find a suitable invariant \((\text{Inv}_i)\) for every control location \(i\) of the TCS, and prove:

1. \((\text{Inv}_i) \models (\text{Safe})\) for all locations \(i\) and
2. the invariants are preserved under all transitions of the system,
 \((\text{Inv}_i) \land (\text{Update}) \models (\text{Inv}_j')\)
 whenever \((\text{Update})\) is a transition from location \(i\) to \(j\).
Safety property

Safety property we want to prove:
no two different trains ever occupy the same track segment:

(Safe) \(\forall t_1, t_2 \) \(\text{segm}(t_1) = \text{segm}(t_2) \rightarrow t_1 = t_2 \)

In order to prove that (Safe) is an invariant of the system, we need to find a suitable invariant (Inv\(_i\)) for every control location i of the TCS, and prove:

1. (Inv\(_i\)) \models (Safe) for all locations i and
2. the invariants are preserved under all transitions of the system,

\((\text{Inv}_i) \land (\text{Update}) \models (\text{Inv}_j')\)

whenever (Update) is a transition from location i to j.

Here: Inv\(_i\) generated by hand (use poss. of generating counterexamples with H-PILoT)
Verification problems

(1) \((\text{Inv}_i) \models (\text{Safe})\) for all locations \(i\) and

(2) the invariants are preserved under all transitions of the system,
\[(\text{Inv}_i) \land (\text{Update}) \models (\text{Inv}'_j)\]

whenever (\text{Update}) is a transition from location \(i\) to \(j\).

Ground satisfiability problems for pointer data structures

Problem: Axioms, Invariants: are universally quantified

Our solution: Hierarchical reasoning in local theory extensions
Examples of theories we need to handle

- **Invariants**

 \[(\text{Inv}_1) \forall t : \text{Train.} \ pc \neq \text{InitState} \land \text{alloc}(\text{next}_s(\text{segm}(t))) \neq \text{tid}(t)\]
 \[\rightarrow \text{length}(\text{segm}(t)) - \text{bd}(\text{spd}(t)) > \text{pos}(t) + \text{spd}(t) \cdot \Delta t\]

 \[(\text{Inv}_2) \forall t : \text{Train.} \ pc \neq \text{InitState} \land \text{pos}(t) \geq \text{length}(\text{segm}(t)) - \text{d}\]
 \[\rightarrow \text{spd}(t) \leq \text{lmax}(\text{next}_s(\text{segm}(t)))\]
Examples of theories we need to handle

- **Invariants**

 \[(\text{Inv}_1) \forall t : \text{Train. } pc \neq \text{InitState} \land \text{alloc}(\text{next}_s(\text{segm}(t))) \neq \text{tid}(t) \rightarrow \text{length}(\text{segm}(t)) - \text{bd}(\text{spd}(t)) > \text{pos}(t) + \text{spd}(t) \cdot \Delta t\]

 \[(\text{Inv}_2) \forall t : \text{Train. } pc \neq \text{InitState} \land \text{pos}(t) \geq \text{length}(\text{segm}(t)) - d \rightarrow \text{spd}(t) \leq \text{lmax}(\text{next}_s(\text{segm}(t)))\]

- **Update rules**

 \[\forall t : \phi_1(t) \rightarrow s_1 \leq \text{spd}'(t) \leq t_1\]

 \[\ldots\]

 \[\forall t : \phi_n(t) \rightarrow s_n \leq \text{spd}'(t) \leq t_n\]
Example 2

Hybrid systems \mapsto Hybrid automata
Example 2

Chemical plant

Two substances are mixed; they react. The resulting product is filtered out; then the procedure is repeated.

Check:

• No overflow
• Substances always in the right proportion
• If substances in wrong proportion, tank can be drained in ≤ 200 s.

Parametric description:

• Determine values for parameters such that this is the case
Example 2

Mode 1: Fill Temperature is low, 1 and 2 do not react. Substances 1 and 2 (possibly mixed with a small quantity of 3) are filled in the tank in equal quantities up to a margin of error.

\[\text{Inv}_1 \quad x_1 + x_2 + x_3 \leq L_f \land \bigwedge_{i=1}^{3} x_i \geq 0 \land -\epsilon_a \leq x_1 - x_2 \leq \epsilon_a \land 0 \leq x_3 \leq \text{min} \]

\[\text{flow}_1 \quad \bullet x_1 \geq \text{dmin} \land \bullet x_2 \geq \text{dmin} \land \bullet x_3 = 0 \land -\delta_a \leq \bullet x_1 - \bullet x_2 \leq \delta_a \]

Jumps: (1,4)

If proportion not kept: system jumps into mode 4 (Dump)

\[e_1 \quad \text{guard}_{e_1} (x_1, x_2, x_3) = x_1 - x_2 \geq \epsilon_a \]

(from 1 to 4) \[\text{jump}_{e_1} (x_1, x_2, x_3, x'_1, x'_2, x'_3) = \bigwedge_{i=1}^{3} x'_i = 0 \]

\[e_2 \quad \text{guard}_{e_1} (x_1, x_2, x_3) = x_1 - x_2 \leq -\epsilon_a \]

(from 1 to 4) \[\text{jump}_{e_1} (x_1, x_2, x_3, x'_1, x'_2, x'_3) = \bigwedge_{i=1}^{3} x'_i = 0 \]
Example

Mode 1: Fill Temperature is low, 1 and 2 do not react. Substances 1 and 2 (possibly mixed with a small quantity of 3) are filled in the tank in equal quantities up to a margin of error.

\[
\begin{align*}
\text{Inv}_1 & \quad x_1 + x_2 + x_3 \leq L_f \land \bigwedge_{i=1}^{3} x_i \geq 0 \land \\
& \quad -\epsilon_a \leq x_1 - x_2 \leq \epsilon_a \land 0 \leq x_3 \leq \text{min} \\
\text{flow}_1 & \quad \bullet x_1 \geq \text{dmin} \land \bullet x_2 \geq \text{dmin} \land \bullet x_3 = 0 \land -\delta_a \leq \bullet x_1 - \bullet x_2 \leq \delta_a
\end{align*}
\]

Jumps: (1,2)

If the total quantity of substances exceeds level \(L_f \) (tank filled) the system jumps into mode 2 (React).

\[
\begin{align*}
e &= (1, 2) \quad \text{guard}_{(1,2)}(x_1, x_2, x_3) = x_1 + x_2 + x_3 \geq L_f \\
& \quad \text{jump}_{(1,2)}(x_1, x_2, x_3, x_1', x_2', x_3') = \bigwedge_{i=1}^{3} x_i' = x_i
\end{align*}
\]
Example

Mode 2: React Temperature is high. Substances 1 and 2 react. The reaction consumes equal quantities of substances 1 and 2 and produces substance 3.

\[
\text{Inv}_2: \quad L_f \leq x_1 + x_2 + x_3 \leq L_{\text{overflow}} \land \land_{i=1}^3 x_i \geq 0 \land \\
-\epsilon_a \leq x_1 - x_2 \leq \epsilon_a \land 0 \leq x_3 \leq \text{max}
\]

\[
\text{flow}_2: \quad \bullet x_1 \leq -d_{\text{max}} \land \bullet x_2 \leq -d_{\text{max}} \land \bullet x_3 \geq d_{\text{min}} \\
\land \bullet x_1 = \bullet x_2 \land \bullet x_3 + \bullet x_1 + \bullet x_2 = 0
\]

Jumps:

If the proportion between substances 1 and 2 is not kept the system jumps into mode 4 (Dump);

If the total quantity of substances 1 and 2 is below some minimal level min the system jumps into mode 3 (Filter).
Example

Mode 3: Filter Temperature is low. Substance 3 is filtered out.

\[\text{Inv}_3 \quad x_1 + x_2 + x_3 \leq L_{\text{overflow}} \quad \land \quad \land_{i=1}^{3} x_i \geq 0 \quad \land \\
-\epsilon_a \leq x_1 - x_2 \leq \epsilon_a \quad \land \quad x_3 \geq \min \\
\]

\[\text{flow}_3 \quad \bullet \; x_1 = 0 \land \bullet \; x_2 = 0 \quad \land \quad \bullet \; x_3 \leq -d_{\text{max}} \]

Jumps:

If proportion not kept: system jumps into mode 4 (Dump);

Otherwise, if the concentration of substance 3 is below some minimal level \min the system jumps into mode 1 (Fill).
Mode 4: Dump The content of the tank is emptied. For simplicity we assume that this happens instantaneously:

\[\text{Inv}_4 : \bigwedge_{i=1}^{3} x_i = 0 \text{ and } \text{flow}_4 : \bigwedge_{i=1}^{3} x_i = 0. \]
Invariant checking: Check whether Ψ is an invariant in a HA S, i.e.:

1. $\text{Init}_q \models \psi$ for all $q \in Q$;
2. ψ is invariant under jumps and flows:
 - **(Flow)** For every flow in mode q, the continuous variables satisfy ψ during and at the end of the flow.
 - **(Jump)** For every jump according to a control switch e, if ψ holds before the jump, it holds after the jump.

Examples:

- Is “$x_1 + x_2 + x_3 \leq L_{\text{overflow}}$” an invariant? (no overflow)
- Is “$-\epsilon_a \leq x_1 - x_2 \leq \epsilon_a$” an invariant?
 (substances always mixed in the right proportion)
Simple verification problems

Bounded model checking: Is formula Safe preserved under runs of length $\leq k$?, i.e.:

1. $Init_q \models Safe$ for every $q \in Q$;

2. The continuous variables satisfy Safe during and at the end of all runs of length j for all $1 \leq j \leq k$.

Example:

- Is “$x_1 + x_2 + x_3 \leq L_{overflow}$” true after all runs of length $\leq k$ starting from a state with e.g. $x_1 = x_2 = x_3 = 0$?

- Is “$-\epsilon_a \leq x_1 - x_2 \leq \epsilon_a$” true after all runs of length $\leq k$ starting from a state with $x_1 = x_2 = x_3 = 0$?
Simple verification problems

Reductions of verification problems to linear arithmetic

(1) Mode invariants, initial states and guards of mode switches are described as conjunctions of linear inequalities.

Example: $\text{Inv}_q = \bigwedge_{j=1}^{mq} (\sum_{i=1}^{n} a_{ij}^q x_i \leq a_j^q)$ can be expressed by:

$$\text{Inv}_q(x_1(t), \ldots, x_n(t)) = \bigwedge_{j=1}^{mq} (\sum_{i=1}^{n} a_{ij}^q x_i(t) \leq a_j^q)$$
Reductions of verification problems to linear arithmetic

(2) The flow conditions are expressed by non-strict linear inequalities:

\[\text{flow}_q = \bigwedge_{j=1}^{n_q} \left(\sum_{i=1}^n c_{ij}^q x_i \leq c_j^q \right), \text{ i.e. } \text{flow}_q(t) = \bigwedge_{j=1}^{n_q} \left(\sum_{i=1}^n c_{ij}^q \dot{x}_i(t) \leq c_j^q \right). \]
Simple verification problems

Reductions of verification problems to linear arithmetic

(2) The flow conditions are expressed by non-strict linear inequalities:

\[
\text{flow}_q = \bigwedge_{j=1}^{n_q} \left(\sum_{i=1}^{n} c_{ij}^q \dot{x}_i \leq c_j^q \right), \text{ i.e. } \text{flow}_q(t) = \bigwedge_{j=1}^{n_q} \left(\sum_{i=1}^{n} c_{ij}^q \dot{x}_i(t) \leq c_j^q \right).
\]

Approach: Express the flow conditions in \([t_0, t_1]\) without referring to derivatives.

Flow\(_q\)(t\(_0\), t\(_1\)) : \(\forall t (t_0 \leq t \leq t_1 \rightarrow \text{Inv}_q(\overline{x}(t))) \land \forall t, t' (t_0 \leq t \leq t' \leq t_1 \rightarrow \text{flow}_q(t, t'))\).

where: \(\text{flow}_q(t, t') = \bigwedge_{j=1}^{n_q} \left(\sum_{i=1}^{n} c_{ij}^q (x_i(t') - x_i(t)) \leq c_j^q (t' - t) \right)\).
Simple verification problems

Reductions of verification problems to linear arithmetic

(2) The flow conditions are expressed by non-strict linear inequalities:
\[
\text{flow}_q = \bigwedge_{j=1}^{n^q} \left(\sum_{i=1}^{n} c_{ij}^q \dot{x}_i \leq c_j^q \right), \text{ i.e. } \text{flow}_q(t) = \bigwedge_{j=1}^{n^q} \left(\sum_{i=1}^{n} c_{ij}^q \dot{x}_i(t) \leq c_j^q \right).
\]

Approach: Express the flow conditions in \([t_0, t_1]\) without referring to derivatives.

Flow \(q((t_0, t_1)) : \forall t \in [t_0, t_1] \rightarrow \text{Inv}_q(\underline{x}(t))) \land \forall t, t' \in [t_0, t'] \rightarrow \text{flow}_q(t, t').

where:
\[
\text{flow}_q(t, t') = \bigwedge_{j=1}^{n^q} \left(\sum_{i=1}^{n} c_{ij}^q (x_i(t') - x_i(t)) \leq c_j^q (t' - t) \right).
\]

Remark: \(\text{flow}_q(t_0, t_1)\) contains universal quantifiers.

Locality results: Sufficient to use the instances at \(t_0\) and \(t_1\)

Flow \(^{\text{Inst}}_q((t_0, t_1)) : \text{Inv}_q(\underline{x}(t_0))) \land \text{Inv}_q(\underline{x}(t_1))) \land \text{flow}_q(t_0, t_1)).
Example

Invariant:

\[\phi_{\text{safe}}(x_1, x_2, x_3) : x_1 + x_2 + x_3 \leq L_{\text{overflow}} \wedge -\epsilon \leq x_1 - x_2 \leq \epsilon. \]

Illustration: \(F_{\text{flow}}(2) \) (invariance under the flow in reaction mode):

- \(\Psi(0) \)
 \[(x_1(0) + x_2(0) + x_3(0) \leq L_{\text{overflow}} \wedge -\epsilon \leq x_1(0) - x_2(0) \leq \epsilon) \wedge \]

- \(\neg \Psi(t) \)
 \[-(x_1(t) + x_2(t) + x_3(t) \leq L_{\text{overflow}} \wedge -\epsilon \leq x_1(t) - x_2(t) \leq \epsilon) \wedge \]

**Inv}_2(0) \)

\[L_f \leq x_1(0) + x_2(0) + x_3(0) \leq L_{\text{overflow}} \wedge x_3(0) \leq \max \wedge \]

**Inv}_2(t) \)

\[L_f \leq x_1(t) + x_2(t) + x_3(t) \leq L_{\text{overflow}} \wedge x_3(t) \leq \max \wedge \]

**flow}_2 \)

\[x_1(t) - x_1(0) \leq -d_{\text{max}} \cdot t \wedge x_2(t) - x_2(0) \leq -d_{\text{max}} \cdot t \wedge \]

\[x_3(t) - x_3(0) \geq d_{\text{min}} \cdot t \wedge (x_1(t) - x_1(0)) - (x_2(t) - x_2(0)) = 0 \wedge \]

\[(x_1(t) - x_1(0)) + (x_2(t) - x_2(0)) + (x_3(t) - x_3(0)) = 0 \]

For fixed values for \(L_f, L_{\text{overflow}} \) — satisfiability check: \(\text{PTIME} \).

Parametric version: check satisfiability if \(L_f < L_{\text{overflow}} \wedge \epsilon_a < \epsilon \)

or generate constraints on the parameters which guarantee (un)satisfiability
Further extensions (Systems of LHA)

[Damm, Horbach, VS: FroCoS’15] Modularity results and small model property results for (decoupled) families of linear hybrid automata

Examples:

Sensors + Communication Channels

Safety properties: \(\forall i_1, \ldots, i_k \; \phi_{\text{safe}}(i_1, \ldots, i_l) \)

Collision free: \(\forall i, j (\text{lane}(i) = \text{lane}(j) \land \text{pos}(i) \geq \text{pos}(j) \land i \neq j \rightarrow \text{pos}(i) - \text{pos}(j) > d) \)
Model: Families of similar interacting system

Model families \(\{ S(i) \mid i \in I \} \) consisting of an unbounded number of similar interacting systems.

- Model the interaction
- Model the systems \(S(i) \)
- Model the topology updates
Model: Families of similar interacting systems

Model families \(\{ S(i) \mid i \in I \} \) consisting of an unbounded number of similar interacting systems.

- **Model the interaction**
 \[\mapsto \text{structures } (I, \{ p : I \rightarrow I \}_{p \in P}) \]
 \[P = P_S \cup P_N \]

The functions in \(P \) model the way the systems perceive their neighbors

\(P_S \): sensors:

- \(\text{sideback}(7) = 3 \)
- \(\text{back}(7) = 3 \)
- \(\text{front}(7) = \text{nil} \)
- \(\text{sidefront}(7) = 10 \)
Model: Families of similar interacting systems

Model families \(\{ S(i) \mid i \in I \} \) consisting of an unbounded number of similar interacting systems.

- Model the interaction \(\mapsto \) structures \((I, \{ p : I \to I \}_{p \in P}) \)
- Model the systems \(S(i) \) \(\mapsto \) hybrid automata
Model: Spatial families of LHA

Model families \(\{S(i) \mid i \in I\} \) consisting of an unbounded number of similar interacting systems.

- Model the interaction \(\leftrightarrow \) structures \((I, \{p : I \rightarrow I\}_{p \in P}) \)
- Model the systems \(S(i) \) \(\leftrightarrow \) hybrid automata
- **Model the topology updates** \(\leftrightarrow \) Topology automaton

Example:

Update(front, front')

\[
\forall i (i \neq \text{nil} \land \text{Prop}(i) \land \neg \exists j(\text{ASL}(j, i)) \rightarrow \text{front}'(i) = \text{nil})
\]

\[
\forall i (i \neq \text{nil} \land \text{Prop}(i) \land \exists j(\text{ASL}(j, i)) \rightarrow \text{Closest}_f(\text{front}'(i), i))
\]

\[
\forall i (i \neq \text{nil} \land \neg \text{Prop}(i) \rightarrow \text{front}'(i) = \text{front}(i))
\]

ASL\((j, i)\): \(j \neq \text{nil} \land \text{lane}(j) = \text{lane}(i) \land \text{pos}(j) > \text{pos}(i) \) \(j \) is ahead of \(i \) on the same lane

Closest\(_f\((j, i)\): \(\text{ASL}(j, i) \land \forall k(\text{ASL}(k, i) \rightarrow \text{pos}(k) \geq \text{pos}(j)) \) \(j \) is ahead of \(i \); no car between them.
Verification

Is safety property an inductive invariant?
Verification

Is safety property an inductive invariant?

Local extensions: use \texttt{H-PILoT}

• Unsatisfiable \mapsto Safety invariant
• Satisfiable \mapsto Model
Verification

Is safety property an inductive invariant?

Local extensions: use **H-PILoT**
- Unsatisfiable \mapsto Safety invariant
- Satisfiable \mapsto Model \mapsto Simulation [J. Wild, BSc Thesis 2018]
Other approaches

First-Order Dynamic Logic
Dynamic logic in which the atomic programs contain variables
The KeY System (Bernhard Beckert et al.)

Hybrid Dynamic Logic
Dynamic logic in which the atomic programs contain differential equations
The KeYmaera Verification Tool (Andre Platzer)
(Differential dynamic logic)
Summary

• Basic notions in formal specification and verification

Related topics

- Seminar “Decision Procedures and Applications”: Summer Semester

More details on Specification, Model Checking, Verification:

Every summer (usually end of August):
 Summer school “Verification Technology, Systems & Applications”

BSc/MSc Theses in the area