\[\Sigma = (\Sigma, \Pi) \text{ where } \Pi = \emptyset \text{ (the only predicate symbol is equality) } \]

- The universality property of free algebras

Let \(K \) be a class of \(\Sigma \)-algebras and \(n \) be the congruence relation on \(T_{\Sigma}(x) \) defined by \(t_1 \equiv t_2 \) if \(K \models t_1 = t_2 \) (i.e. if \(a \models t_1 = t_2 \) for all \(a \in K \)).

Let \(T_{\Sigma}(x) / \sim \) be the algebra defined by:

\[
\overline{T_{\Sigma}(x)} / \sim = (T_{\Sigma}(x) / \sim , \{ f : \overline{T_{\Sigma}(x)} / \sim \to \overline{T_{\Sigma}(x)} / \sim \mid f \in \Sigma \})
\]

where \(\overline{T_{\Sigma}(x)} / \sim = \{ [t] \mid t \in T_{\Sigma}(x) \} \) and \([t] = \{ t' \in T_{\Sigma}(x) \mid t \equiv t' \} \).

- If \(f/t \in \Sigma \) then
 \[
 f_{T_{\Sigma}(x) / \sim} ([t_1], \ldots, [t_n]) = [f(t_1, \ldots, t_n)]
 \]

 (The definition does not depend on the representatives because if \([t_1] = [t'_1], \ldots, [t_n] = [t'_n] \)
 then \(t_1 \equiv t'_1, \ldots, t_n \equiv t'_n \).

 Hence, as \(\sim \) is a congruence relation,

\[
 f(t_1, \ldots, t_n) \equiv f(t'_1, \ldots, t'_n).
\]

Definition: Let \(A = (U_A, \{ f_A \mid f \in \Sigma \}) \) be \(\Sigma \)-algebras,

\(B = (U_B, \{ f_B \mid f \in \Sigma \}) \)

A homomorphism \(h : A \to B \) is a map

\[h : U_A \to U_B \text{ with the property that for every } f \in \Sigma \text{ with } a(f) = n, \]

and for every \(a_1, \ldots, a_n \in U_A \)

\[h(f_A(a_1, \ldots, a_n)) = f_B(h(a_1), \ldots, h(a_n)) \].
Theorem (the universal property of the free algebra): Let \(A \in \mathcal{K} \). Then for every \(\beta : X \to A \) there exists a unique homomorphism of \(\Sigma \)-algebras \(\beta' : T_\Sigma(x)/\sim \to A \) with the property that \(\beta'(\lfloor x \rfloor) = \beta(x) \) for all \(x \in X \).

Proof: Let \(\beta : X \to A \). We can extend (homomorphically) \(\beta \) to \(\beta' : T_\Sigma(x) \to A \), where \(A(\beta)(x) = x \),

we have \(x \xrightarrow{\beta} A(\beta) \)

Consider now the surjection \(p : T_\Sigma(x) \to T_\Sigma(x)/\sim \) defined by \(p(t) = [t] = \{ t' \in T_\Sigma(x) \mid t \sim t' \} \).

we define \(\beta' : T_\Sigma(x)/\sim \to A \) by \(\beta'([t]) = A(\beta)(t) \).

we have \(x \xrightarrow{\beta} A \)

\(\xrightarrow{\beta'} \)

we need to prove:

1. \(\beta' \) well-defined, i.e.

 if \([t] = [t'] \) then \(\beta'(t) = \beta'(t') \)

2. \(\beta' \) homomorphism of \(\Sigma \)-algebras

3. \(\beta'([x]) = \beta(x) \) for all \(x \in X \)

4. If \(h : T_\Sigma(x)/\sim \to A \) is such that

 \(h([x]) = \beta(x) \) and \(h \) is a homomorphism of \(\Sigma \)-algebras

 then \(h = \beta' \).
1. β' is well-defined.

Assume $[t] = [t']$,
then $t \equiv t'$, i.e. $[K] = t = t'$, i.e. $B \equiv t = t' \forall B \in K$.

Since $A \in K$ it follows that $A \equiv t = t'$,
hence for all $\overline{a} : x \rightarrow A$,$A(\overline{a})(t) = A(\overline{a})(t')$.

For $\overline{a} = \overline{b}$ we therefore have $U(\overline{a})(t) = U(\overline{a})(t')$.

Hence, $\beta'(\{t\}) = U(\overline{a})(t) = U(\overline{a})(t') = \beta'(\{t'\})$.

2. β' is a homomorphism of Σ-algebras.

$\beta'(\sum_{i=1}^n f_i(x)) = \beta'(\sum_{i=1}^n f_i(x))$ = $A(\overline{a})(f(t_1), \ldots, f(t_n))$

Def. of β'

$\beta'(f(x)) = A(\overline{a})(f(t_1), \ldots, f(t_n))$

Def. of $A(\overline{a})$

$\beta'(\{x\}) = \beta(x)$ for all $x \in X$.

3. $\beta'(\{x\}) = \beta(x)$ for all $x \in X$

Def. of β'

$\beta'(\{x\}) = A(\overline{a})(x) = \beta(x)$.

4. β' is the unique extension.

Let $h : T_\Sigma(x) \rightarrow A$ with $h([x]) = \beta(x) \in h \Sigma$-homomorphism.

We can prove by structural induction that for every $t \in T_\Sigma(x)$

$h([t]) = A(\overline{a})(t)$.

\[\begin{array}{c}
\text{If } t = x: \quad h([x]) = \beta(x) = U(\overline{a})(x) \\
\text{If } t = \sum_{i=1}^n t_i \text{ and term for } t_i \in T_\Sigma(x) \Rightarrow t = U(t_1, \ldots, t_n) \text{ for } t_i \in T_\Sigma(x).
\end{array} \]

5. Assume property holds for t_1, \ldots, t_n.

Prove it holds for t with h homomorphism.