Seminar Decision Procedures and Applications

Background Informations

Viorica Sofronie-Stokkermans
University Koblenz-Landau

2 June 2015
Topics for the talks

- **Julia Schöenberger**: Automata approach to Presburger arithmetic (in chapter by Hubert Common and Claude Kirchner)

- **David Nagel**: An efficient decision procedure for Unit Two-Variables per Inequality (UTVPI) Constraints (Work by Shuvendu Lahiri and Madanlal Musuvathi)

- **David Friedrich**: Abstract Congruence Closure (work by Leo Bachmair and Ashish Tiwari)

- **Cynthia Engel**: Shostak’s method (Work by R.E. Shostak and Harald Ganzinger)

- **Shuyi Weng**: What’s decidable about arrays (Work by A. Bradley, Z. Manna and H. Sipma)

- **Kilian Laudt**: Decision procedures for recursive data structures with integer constraints (Work by T. Zhang, H.B. Sipma, Z. Manna)

- **Carl Brenk**: Terminological cycles in a description logic with existential restriction (Work by Franz Baader)
Possible Schedule

- 9.06.2015: Short presentations (5 min)
- 30.06.2015: Background TRS (VSS)
- 7.07.2015: Arithmetic
 - Julia Schönberger: Automata approach to Presburger arithmetic
 - David Nagel: An efficient decision procedure for Unit Two-Variables per Inequality (UTVPI) Constraints
- 14.07.2015: Congruence Closure, Combinations
 - David Friedrich: Abstract Congruence Closure
 - Cynthia Engel: Shostak’s method
- 21.07.2015: Applications
 - Shuyi Weng: What’s decidable about arrays
 - Kilian Laudt: Decision procedures for recursive data structures with integer constraints
 - Carl Brenk: Terminological cycles in a description logic with existential restriction
Last time

- **Reasoning in standard theories**
 - A crash course: Decidable logical theories and theory fragments

- **Reasoning in complex theories**
 - Modular reasoning in combinations of theories
 - disjoint signature: the Nelson-Oppen method

- **Applications**
Today

• Reasoning in standard theories

 A crash course: Decidable logical theories and theory fragments

Reasoning in complex theories

 Modular reasoning in combinations of theories
 disjoint signature: the Nelson-Oppen method

• Applications
Reasoning in combinations of theories

We are interested in testing satisfiability of ground formulae
Combination of theories
Combinations of theories and models

Forgetting symbols

Let $\Sigma = (\Omega, \Pi)$ and $\Sigma' = (\Omega', \Pi')$ s.t. $\Sigma \subseteq \Sigma'$, i.e., $\Omega \subseteq \Omega'$ and $\Pi \subseteq \Pi'$

For $A \in \Sigma'$-alg, we denote by $A_{|\Sigma}$ the Σ-structure for which:

$$U_{A_{|\Sigma}} = U_A, \quad f_{A_{|\Sigma}} = f_A \quad \text{for } f \in \Omega;$$
$$P_{A_{|\Sigma}} = P_A \quad \text{for } P \in \Pi$$

(ignoring functions and predicates associated with symbols in $\Sigma' \setminus \Sigma$)

$A_{|\Sigma}$ is called the restriction (or the reduct) of A to Σ.

Example: $\Sigma' = (\{\div/2, \times/2, \div0\}, \{\leq /2, \text{even}/1, \text{odd}/1\})$
$\Sigma = (\{\div/2, \div0\}, \{\leq /2\}) \subseteq \Sigma'$
$\mathcal{N} = (\mathbb{N}, +, *, 1, \leq, \text{even, odd}) \quad \mathcal{N}_{|\Sigma} = (\mathbb{N}, +, 1, \leq)$
One possibility of combining theories

Syntactic view: $\mathcal{T}_1 + \mathcal{T}_2 = \mathcal{T}_1 \cup \mathcal{T}_2 \subseteq F_{\Sigma_1 \cup \Sigma_2}(X)$

$\text{Mod}(\mathcal{T}_1 \cup \mathcal{T}_2) = \{ \mathcal{A} \in (\Sigma_1 \cup \Sigma_2)\text{-alg} \mid \mathcal{A} \models G, \text{ for all } G \text{ in } \mathcal{T}_1 \cup \mathcal{T}_2 \}$

where $\Sigma_1 \cup \Sigma_2 = (\Omega_1, \Pi_1) \cup (\Omega_2, \Pi_2) = (\Omega_1 \cup \Omega_2, \Pi_1 \cup \Pi_2)$
One possibility of combining theories

Syntactic view: $\mathcal{T}_1 + \mathcal{T}_2 = \mathcal{T}_1 \cup \mathcal{T}_2 \subseteq F_{\Sigma_1 \cup \Sigma_2}(X)$

$\text{Mod}(\mathcal{T}_1 \cup \mathcal{T}_2) = \{ \mathcal{A} \in (\Sigma_1 \cup \Sigma_2)\text{-alg} \mid \mathcal{A} \models G, \text{ for all } G \text{ in } \mathcal{T}_1 \cup \mathcal{T}_2 \}$

Semantic view: Let $\mathcal{M}_i = \text{Mod}(\mathcal{T}_i), i = 1, 2$

$\mathcal{M}_1 + \mathcal{M}_2 = \{ \mathcal{A} \in (\Sigma_1 \cup \Sigma_2)\text{-alg} \mid \mathcal{A}|_{\Sigma_i} \in \mathcal{M}_i \text{ for } i = 1, 2 \}$
One possibility of combining theories

Syntactic view: \(T_1 + T_2 = T_1 \cup T_2 \subseteq F_{\Sigma_1 \cup \Sigma_2}(X) \)

\[
\text{Mod}(T_1 \cup T_2) = \{ A \in (\Sigma_1 \cup \Sigma_2)\text{-alg} \mid A \models G, \text{ for all } G \text{ in } T_1 \cup T_2 \}
\]

Semantic view: Let \(M_i = \text{Mod}(T_i), i = 1, 2 \)

\[
M_1 + M_2 = \{ A \in (\Sigma_1 \cup \Sigma_2)\text{-alg} \mid A|_{\Sigma_i} \in M_i \text{ for } i = 1, 2 \}
\]

\[
A \in \text{Mod}(T_1 \cup T_2) \iff A \models G, \text{ for all } G \text{ in } T_1 \cup T_2 \\
\text{iff } A|_{\Sigma_i} \models G, \text{ for all } G \text{ in } T_i, i = 1, 2 \\
\text{iff } A|_{\Sigma_i} \in M_i, i = 1, 2 \\
\text{iff } A \in M_1 + M_2
\]
One possibility of combining theories

Syntactic view: $\mathcal{T}_1 + \mathcal{T}_2 = \mathcal{T}_1 \cup \mathcal{T}_2 \subseteq F_{\Sigma_1 \cup \Sigma_2}(X)$

$\text{Mod}(\mathcal{T}_1 \cup \mathcal{T}_2) = \{ \mathcal{A} \in (\Sigma_1 \cup \Sigma_2)\text{-alg} \mid \mathcal{A} \models G, \text{ for all } G \text{ in } \mathcal{T}_1 \cup \mathcal{T}_2 \}$

Semantic view: Let $\mathcal{M}_i = \text{Mod}(\mathcal{T}_i), i = 1, 2$

$\mathcal{M}_1 + \mathcal{M}_2 = \{ \mathcal{A} \in (\Sigma_1 \cup \Sigma_2)\text{-alg} \mid \mathcal{A}|_{\Sigma_i} \in \mathcal{M}_i \text{ for } i = 1, 2 \}$

Remark: $\mathcal{A} \in \text{Mod}(\mathcal{T}_1 \cup \mathcal{T}_2)$ iff $(\mathcal{A}|_{\Sigma_1} \in \text{Mod}(\mathcal{T}_1) \text{ and } \mathcal{A}|_{\Sigma_2} \in \text{Mod}(\mathcal{T}_2))$

Consequence: $\text{Th}(\text{Mod}(\mathcal{T}_1 \cup \mathcal{T}_2)) = \text{Th}(\mathcal{M}_1 + \mathcal{M}_2)$
Example

1. **Presburger arithmetic + UIF**

 \[\text{Th}(\mathbb{Z}_+) \cup \text{UIF} \quad \Sigma = (\Omega, \Pi) \]

 Models: \((A, 0, s, +, \{f_A\}_{f \in \Omega}, \leq, \{P_A\}_{P \in \Pi})\)

 where \((A, 0, s, +, \leq) \in \text{Mod}(\text{Th}(\mathbb{Z}_+)) \).

2. **The theory of reals + the theory of a monotone function \(f\)**

 \[\text{Th}(\mathbb{R}) \cup \text{Mon}(f) \quad \text{Mon}(f) : \forall x, y (x \leq y \rightarrow f(x) \leq f(y)) \]

 Models: \((A, +, \ast, f_A, \{\leq\})\), where

 where \((A, +, \ast, \leq) \in \text{Mod}(\text{Th}(\mathbb{R}))\).

 \((A, f_A, \leq) \models \text{Mon}(f)\), i.e. \(f_A : A \rightarrow A\) monotone.

Note: The signatures of the two theories share the \(\leq\) predicate symbol
Combinations of theories

Definition. A theory is consistent if it has at least one model.

Question: Is the union of two consistent theories always consistent?

Answer: No. (Not even when the two theories have disjoint signatures)

Example:

\[\Sigma_1 = (\Omega_1, \emptyset), \quad \Sigma_2 = (\{c/0, d/0\}, \emptyset), \quad c, d \notin \Omega_1\]

\[T_1 = \{\exists x, y, z (x \not\equiv y \land x \not\equiv z \land y \not\equiv z)\}\]

\[T_2 = \{\forall x (x \equiv c \lor x \equiv d)\}\]

\[A \in \text{Mod}(T_1) \quad \text{iff} \quad |U_A| \geq 3.\]

\[B \in \text{Mod}(T_2) \quad \text{iff} \quad |U_B| \leq 2.\]
The combined \textit{decidability} problem

For $i = 1, 2$
\begin{itemize}
 \item let \mathcal{T}_i be a first-order theory in signature Σ_i
 \item assume the \mathcal{T}_i ground satisfiability problem is decidable
\end{itemize}

Let $\mathcal{T}_1 \bigoplus \mathcal{T}_2$ be a combination of \mathcal{T}_1 and \mathcal{T}_2

\textbf{Question:}
Is the $\mathcal{T}_1 \bigoplus \mathcal{T}_2$ ground satisfiability problem decidable?
Goal: Modularity

Modular Reasoning

\(\mathcal{T}_0 \): \(\Sigma_0 \)-theory.

\(\mathcal{T}_i \): \(\Sigma_i \)-theory; \(\mathcal{T}_0 \subseteq \mathcal{T}_i \) \(\Sigma_0 \subseteq \Sigma_i \).

Example:

\(\text{lists}(\mathbb{R}) \cup \text{arrays}(\mathbb{R}) \)

Can use provers for \(\mathcal{T}_1, \mathcal{T}_2 \) as blackboxes to prove theorems in \(\mathcal{T}_1 \cup \mathcal{T}_2 \)?

Which information needs to be exchanged between the provers?
Combination of theories over disjoint signatures

The Nelson/Oppen procedure

Given: $\mathcal{T}_1, \mathcal{T}_2$ stably infinite first-order theories with signatures Σ_1, Σ_2

Assume that $\Sigma_1 \cap \Sigma_2 = \emptyset$ (share only \approx)

P_i decision procedures for satisfiability of ground formulae w.r.t. \mathcal{T}_i

ϕ quantifier-free formula over $\Sigma_1 \cup \Sigma_2$

Task: Check whether ϕ is satisfiable w.r.t. $\mathcal{T}_1 \cup \mathcal{T}_2$

Note: Restrict to conjunctive quantifier-free formulae

$\phi \mapsto \text{DNF}(\phi)$

$\text{DNF}(\phi)$ satisfiable in \mathcal{T} iff one of the disjuncts satisfiable in \mathcal{T}
Example

[Nelson & Oppen, 1979]

<table>
<thead>
<tr>
<th>Theory</th>
<th>Symbols</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{R} theory of rationals</td>
<td>$\Sigma_{\mathcal{R}} = {\leq, +, -, 0, 1}$</td>
<td>\simeq</td>
</tr>
<tr>
<td>\mathcal{L} theory of lists</td>
<td>$\Sigma_{\mathcal{L}} = {\text{car, cdr, cons}}$</td>
<td>\simeq</td>
</tr>
<tr>
<td>\mathcal{E} theory of equality (UIF)</td>
<td>Σ: free function and predicate symbols</td>
<td>\simeq</td>
</tr>
</tbody>
</table>
Example

[Nelson & Oppen, 1979]

Theories

<table>
<thead>
<tr>
<th>\mathcal{R}</th>
<th>theory of rationals</th>
<th>$\Sigma_{\mathcal{R}} = {\leq, +, -, 0, 1}$</th>
<th>\simeq</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{L}</td>
<td>theory of lists</td>
<td>$\Sigma_{\mathcal{L}} = {\text{car, cdr, cons}}$</td>
<td>\simeq</td>
</tr>
<tr>
<td>\mathcal{E}</td>
<td>theory of equality (UIF)</td>
<td>Σ: free function and predicate symbols</td>
<td>\simeq</td>
</tr>
</tbody>
</table>

Problems:

1. $\mathcal{R} \cup \mathcal{L} \cup \mathcal{E} \models \forall x, y (x \leq y \land y \leq x + \text{car(cons}(0, x))) \land P(h(x) - h(y)) \rightarrow P(0))$

2. Is the following conjunction:

 $c \leq d \land d \leq c + \text{car(cons}(0, c)) \land P(h(c) - h(d)) \land \neg P(0)$

 satisfiable in $\mathcal{R} \cup \mathcal{L} \cup \mathcal{E}$?
Is the following conjunction:

\[c \leq d \land d \leq c + \text{car}(\text{cons}(0, c)) \land P(h(c) - h(d)) \land \neg P(0) \]

satisfiable in \(\mathcal{R} \cup \mathcal{L} \cup \mathcal{E} \)?
Step 1: Purification

Given: \(\phi \) conjunctive quantifier-free formula over \(\Sigma_1 \cup \Sigma_2 \)

Task: Find \(\phi_1, \phi_2 \) s.t. \(\phi_i \) is a pure \(\Sigma_i \)-formula and \(\phi_1 \land \phi_2 \) equivalent with \(\phi \)

\[
\begin{align*}
 f(s_1, \ldots, s_n) \approx g(t_1, \ldots, t_m) & \implies u \approx f(s_1, \ldots, s_n) \land u \approx g(t_1, \ldots, t_m) \\
 f(s_1, \ldots, s_n) \not\approx g(t_1, \ldots, t_m) & \implies u \approx f(s_1, \ldots, s_n) \land v \approx g(t_1, \ldots, t_m) \land u \not\approx v \\
 (\neg) P(\ldots, s_i, \ldots) & \implies (\neg) P(\ldots, u, \ldots) \land u \approx s_i \\
 (\neg) P(\ldots, s_i[t], \ldots) & \implies (\neg) P(\ldots, s_i[t \mapsto u], \ldots) \land u \approx t
\end{align*}
\]

where \(t \approx f(t_1, \ldots, t_n) \)

Termination: Obvious

Correctness: \(\phi_1 \land \phi_2 \) and \(\phi \) equisatisfiable.
Step 1: Purification

\[c \leq d \land d \leq c + \text{car(cons}(0, c)) \land P(h(c) - h(d)) \land \neg P(0) \]
Step 1: Purification

\[
c \leq d \land d \leq c + \text{car} \left(\text{cons}(0, c) \right) \land P(h(c) - h(d)) \land \neg P(0)
\]
Step 1: Purification

\[c \leq d \land d \leq c + \text{car}(\text{cons}(0, c)) \land P(h(c) - h(d)) \land \neg P(0) \]
Step 1: Purification

\[c \leq d \land d \leq c + \text{car(cons}(0, c)) \land P(h(c) - h(d)) \land \neg P(0) \]
Step 1: Purification

\[c \leq d \wedge d \leq c + \text{car} (\text{cons}(0, c)) \wedge P(h(c) - h(d)) \wedge \neg P(0) \]

<table>
<thead>
<tr>
<th>(R)</th>
<th>(L)</th>
<th>(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c \leq d)</td>
<td>(c_1 \approx \text{car} (\text{cons}(c_5, c)))</td>
<td>(P(c_2))</td>
</tr>
<tr>
<td>(d \leq c + c_1)</td>
<td></td>
<td>(\neg P(c_5))</td>
</tr>
<tr>
<td>(c_2 \approx c_3 - c_4)</td>
<td></td>
<td>(c_3 \approx h(c))</td>
</tr>
<tr>
<td>(c_5 \approx 0)</td>
<td></td>
<td>(c_4 \approx h(d))</td>
</tr>
</tbody>
</table>
Step 1: Purification

\[c \leq d \land d \leq c + \text{car}(\text{cons}(0, c)) \land P(h(c) - h(d)) \land \neg P(0) \]

<table>
<thead>
<tr>
<th>(\mathcal{R})</th>
<th>(\mathcal{L})</th>
<th>(\mathcal{E})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c \leq d)</td>
<td>(c_1 \approx \text{car}(\text{cons}(c_5, c)))</td>
<td>(P(c_2))</td>
</tr>
<tr>
<td>(d \leq c + c_1)</td>
<td>(c_2 \approx c_3 - c_4)</td>
<td>(\neg P(c_5))</td>
</tr>
<tr>
<td>(c_2 \approx c_3 - c_4)</td>
<td>(c_5 \approx 0)</td>
<td>(c_3 \approx h(c))</td>
</tr>
<tr>
<td>satisfiable</td>
<td>satisfiable</td>
<td>satisfiable</td>
</tr>
</tbody>
</table>

satisfiable
Step 2: Propagation

$$c \leq d \land d \leq c + \text{car}(\text{cons}(0, c)) \land P(h(c) - h(d)) \land \neg P(0)$$

<table>
<thead>
<tr>
<th>R</th>
<th>L</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c \leq d$</td>
<td>$c_1 \approx \text{car}(\text{cons}(c_5, c))$</td>
<td>$P(c_2)$</td>
</tr>
<tr>
<td>$d \leq c + c_1$</td>
<td></td>
<td>$\neg P(c_5)$</td>
</tr>
<tr>
<td>$c_2 \approx c_3 - c_4$</td>
<td></td>
<td>$c_3 \approx h(c)$</td>
</tr>
<tr>
<td>$c_5 \approx 0$</td>
<td></td>
<td>$c_4 \approx h(d)$</td>
</tr>
</tbody>
</table>

deduce and propagate equalities between constants entailed by components
Step 2: Propagation

\[c \leq d \land d \leq c + \text{car}(\text{cons}(0, c)) \land P(h(c) - h(d)) \land \neg P(0) \]

<table>
<thead>
<tr>
<th>(\mathcal{R})</th>
<th>(\mathcal{L})</th>
<th>(\mathcal{E})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c \leq d)</td>
<td>(c_1 \approx \text{car}(\text{cons}(c_5, c)))</td>
<td>(P(c_2))</td>
</tr>
<tr>
<td>(d \leq c + c_1)</td>
<td>(c_2 \approx c_3 - c_4)</td>
<td>(\neg P(c_5))</td>
</tr>
<tr>
<td>(c_2 \approx c_3 - c_4)</td>
<td>(c_5 \approx 0)</td>
<td>(c_3 \approx h(c))</td>
</tr>
<tr>
<td>(c_5 \approx 0)</td>
<td>(c_1 \approx c_5)</td>
<td>(c_4 \approx h(d))</td>
</tr>
</tbody>
</table>
Step 2: Propagation

\[
c \leq d \land d \leq c + \text{car(cons}(0, c)) \land P(h(c) - h(d)) \land \neg P(0)
\]

<table>
<thead>
<tr>
<th>(R)</th>
<th>(L)</th>
<th>(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c \leq d)</td>
<td>(c_1 \approx \text{car(cons}(c_5, c)))</td>
<td>(P(c_2))</td>
</tr>
<tr>
<td>(d \leq c + c_1)</td>
<td></td>
<td>(\neg P(c_5))</td>
</tr>
<tr>
<td>(c_2 \approx c_3 - c_4)</td>
<td></td>
<td>(c_3 \approx h(c))</td>
</tr>
<tr>
<td>(c_5 \approx 0)</td>
<td></td>
<td>(c_4 \approx h(d))</td>
</tr>
<tr>
<td>(c_1 \approx c_5)</td>
<td>(c_1 \approx c_5)</td>
<td></td>
</tr>
<tr>
<td>(c \approx d)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Step 2: Propagation

\[c \leq d \land d \leq c + \text{car}(\text{cons}(0, c)) \land P(h(c) - h(d)) \land \neg P(0) \]

<table>
<thead>
<tr>
<th>(\mathcal{R})</th>
<th>(\mathcal{L})</th>
<th>(\mathcal{E})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c \leq d)</td>
<td>(c_1 \approx \text{car}(\text{cons}(c_5, c)))</td>
<td>(P(c_2))</td>
</tr>
<tr>
<td>(d \leq c + c_1)</td>
<td></td>
<td>(\neg P(c_5))</td>
</tr>
<tr>
<td>(c_2 \approx c_3 - c_4)</td>
<td></td>
<td>(c_3 \approx h(c))</td>
</tr>
<tr>
<td>(c_5 \approx 0)</td>
<td></td>
<td>(c_4 \approx h(d))</td>
</tr>
<tr>
<td>(c_1 \approx c_5)</td>
<td>(c_1 \approx c_5)</td>
<td>(c \approx d)</td>
</tr>
<tr>
<td>(c \approx d)</td>
<td></td>
<td>(c_3 \approx c_4)</td>
</tr>
</tbody>
</table>
Step 2: Propagation

\[c \leq d \land d \leq c + \text{car}(\text{cons}(0, c)) \land P(h(c) - h(d)) \land \neg P(0) \]

<table>
<thead>
<tr>
<th>(\mathcal{R})</th>
<th>(\mathcal{L})</th>
<th>(\mathcal{E})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c \leq d)</td>
<td>(c_1 \approx \text{car}(\text{cons}(c_5, c)))</td>
<td>(P(c_2))</td>
</tr>
<tr>
<td>(d \leq c + c_1)</td>
<td></td>
<td>(\neg P(c_5))</td>
</tr>
<tr>
<td>(c_2 \approx c_3 - c_4)</td>
<td></td>
<td>(c_3 \approx h(c))</td>
</tr>
<tr>
<td>(c_5 \approx 0)</td>
<td></td>
<td>(c_4 \approx h(d))</td>
</tr>
<tr>
<td>(c_1 \approx c_5)</td>
<td>(c_1 \approx c_5)</td>
<td>(c \approx d)</td>
</tr>
<tr>
<td>(c \approx d)</td>
<td></td>
<td>(c_3 \approx c_4)</td>
</tr>
<tr>
<td>(c_2 \approx c_5)</td>
<td></td>
<td>(\bot)</td>
</tr>
</tbody>
</table>
The Nelson-Oppen algorithm

\(\phi\) conjunction of literals

Step 1. Purification \(\mathcal{T}_1 \cup \mathcal{T}_2 \cup \phi \mapsto (\mathcal{T}_1 \cup \phi_1) \cup (\mathcal{T}_2 \cup \phi_2)\):

where \(\phi_i\) is a pure \(\Sigma_i\)-formula and \(\phi_1 \land \phi_2\) is equisatisfiable with \(\phi\).

Step 2. Propagation.

The decision procedure for ground satisfiability for \(\mathcal{T}_1\) and \(\mathcal{T}_2\) fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.
The Nelson-Oppen algorithm

φ conjunction of literals

Step 1. Purification \(T_1 \cup T_2 \cup \phi \mapsto (T_1 \cup \phi_1) \cup (T_2 \cup \phi_2) \):
where \(\phi_i \) is a pure \(\Sigma_i \)-formula and \(\phi_1 \land \phi_2 \) is equisatisfiable with \(\phi \).

Step 2. Propagation.
The decision procedure for ground satisfiability for \(T_1 \) and \(T_2 \) fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature i.e. clauses over the shared variables.
until an inconsistency is detected or a saturation state is reached.

Sound: if inconsistency detected input unsatisfiable
Complete: under additional assumptions
Implementation

\(\varphi \) conjunction of literals

Step 1. Purification: \(\mathcal{T}_1 \cup \mathcal{T}_2 \cup \varphi \mapsto (\mathcal{T}_1 \cup \varphi_1) \cup (\mathcal{T}_2 \cup \varphi_2) \),

where \(\varphi_i \) is a pure \(\Sigma_i \)-formula and \(\varphi_1 \land \varphi_2 \) is equisatisfiable with \(\varphi \).

Step 2. Propagation: The decision procedure for ground satisfiability for \(\mathcal{T}_1 \) and \(\mathcal{T}_2 \) fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

How to implement Propagation?

Guessing: guess a maximal set of literals containing the shared variables; check it for \(\mathcal{T}_i \cup \varphi_i \) consistency.

Backtracking: identify disjunction of equalities between shared variables entailed by \(\mathcal{T}_i \cup \varphi_i \); make case split by adding some of these equalities to \(\varphi_1, \varphi_2 \). Repeat as long as possible.
The Nelson-Oppen algorithm

Termination: only finitely many shared variables to be identified

Soundness: If procedure answers “unsatisfiable” then ϕ is unsatisfiable

Completeness: Under additional hypotheses
Completeness

Example:

<table>
<thead>
<tr>
<th></th>
<th>E_1</th>
<th>E_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(g(x), g(y)) \approx x$</td>
<td></td>
<td>$k(x) \approx k(x)$</td>
</tr>
<tr>
<td>$f(g(x), h(y)) \approx y$</td>
<td></td>
<td>non-trivial</td>
</tr>
</tbody>
</table>

$g(c) \approx h(c) \land k(c) \not\approx c$

- $g(c) \approx h(c)$
- $k(c) \not\approx c$

satisfiable in E_1

satisfiable in E_2

no equations between shared variables; **Nelson-Oppen answers “satisfiable”**
Completeness

Example:

\[
\begin{array}{c|c}
E_1 & E_2 \\
\hline
f(g(x), g(y)) \approx x & k(x) \approx k(x) \\
f(g(x), h(y)) \approx y & \\
\text{non-trivial} & \text{non-trivial} \\
g(c) \approx h(c) \land k(c) \not\approx c \\
g(c) \approx h(c) & k(c) \not\approx c \\
\text{satisfiable in } E_1 & \text{satisfiable in } E_2 \\
\end{array}
\]

no equations between shared variables; Nelson-Oppen answers “satisfiable”

A model of \(E_1 \) satisfies \(g(c) \approx h(c) \) iff \(\exists e \in A \text{ s.t. } g(e) = h(e) \).

Then, for all \(a \in A \): \(a = f_A(g(a), g(e)) = f_A(g(a), h(e)) = e \)

\(g(c) \approx h(c) \land k(c) \not\approx c \) unsatisfiable
Completeness

Another example

\mathcal{T}_1 theory admitting models of cardinality at most 2

\mathcal{T}_2 theory admitting models of any cardinality

such that $\mathcal{T}_i \models \forall x, y \ f_i(x) = f_i(y)$.

$$\phi = f_1(c_1) \not\approx f_1(c_2) \land f_2(c_1) \not\approx f_2(c_3) \land f_2(c_2) \not\approx f_2(c_3)$$

$\phi_1 = f_1(c_1) \not\approx f_1(c_2)$ \quad $\phi_2 = f_2(c_1) \not\approx f_2(c_3) \land f_2(c_2) \not\approx f_2(c_3)$

The Nelson-Oppen procedure returns “satisfiable”

$\mathcal{T}_1 \cup \mathcal{T}_2 \models \forall x, y, z (f_1(x) \not\approx f_1(y) \land f_2(x) \not\approx f_2(z) \land f_2(y) \not\approx f_2(z)$

$\rightarrow (x \not\approx y \land x \not\approx z \land y \not\approx z))$

$f_1(c_1) \not\approx f_1(c_2) \land f_2(c_1) \not\approx f_2(c_3) \land f_2(c_2) \not\approx f_2(c_3)$ unsatisfiable
Completeness

Cause of incompleteness

There exist formulae satisfiable in finite models of bounded cardinality

Solution: Consider stably infinite theories.

\[\mathcal{T} \text{ is stably infinite iff for every quantifier-free formula } \phi \]

\[\phi \text{ satisfiable in } \mathcal{T} \text{ iff } \phi \text{ satisfiable in an infinite model of } \mathcal{T}. \]

Note: This restriction is not mentioned in [Nelson Oppen 1979]; introduced by Oppen in 1980.
Completeness

Guessing version: C set of constants shared by ϕ_1, ϕ_2

R equiv. relation assoc. with partition of C \[ar(C, R) = \bigwedge_{R(c,d)} c \approx d \land \bigwedge_{\neg R(c,d)} c \not\approx d \]

Lemma. Assume that there exists a partition of C s.t. $\phi_i \land ar(C, R)$ is \mathcal{T}_i-satisfiable. Then $\phi_1 \land \phi_2$ is $\mathcal{T}_1 \cup \mathcal{T}_2$-satisfiable.

Idea of proof: Let $A_i \in \text{Mod}(\mathcal{T}_i)$ s.t. $A_i \models \phi_i \land ar(C, R)$. Then $c_{A_1} = d_{A_1}$ iff $c_{A_2} = d_{A_2}$.

Let $i : \{c_{A_1} \mid c \in C\} \to \{c_{A_2} \mid c \in C\}$, $i(c_{A_1}) = c_{A_2}$ well-defined; bijection.

Stable infinity: can assume w.l.o.g. that A_1, A_2 have the same cardinality

Let $h : A_1 \to A_2$ bijection s.t. $h(c_{A_1}) = c_{A_2}$

Use h to transfer the Σ_1-structure on A_2.

Theorem. If $\mathcal{T}_1, \mathcal{T}_2$ are both stably infinite and the shared signature is empty then the Nelson-Oppen procedure is sound, complete and terminating.

Thus, it transfers decidability of ground satisfiability from $\mathcal{T}_1, \mathcal{T}_2$ to $\mathcal{T}_1 \cup \mathcal{T}_2$.
Complexity

Main sources of complexity:

(i) transformation of the formula in DNF
(ii) propagation
 (a) decide whether there is a disjunction of equalities between variables
 (b) investigate different branches corresponding to disjunctions
Complexity

Main sources of complexity:

(i) transformation of the formula in DNF

(ii) propagation

\[T \text{ is convex} \iff \text{ for every quantifier-free formula } \phi, \]
\[\phi \models \bigvee_i x_i \approx y_i \implies \phi \models x_j \approx y_j \text{ for some } j. \]

\[\rightarrow \text{ No branching} \]
Complexity

Main sources of complexity:

(i) transformation of the formula in DNF
(ii) propagation

\[\mathcal{T} \text{ is convex} \iff \text{for every quantifier-free formula } \phi, \]
\[\phi \models \bigvee_i x_i \approx y_i \Rightarrow \phi \models x_j \approx y_j \text{ for some } j. \]

\[\mapsto \text{No branching} \]

Theorem. Let \(\mathcal{T}_1 \) and \(\mathcal{T}_2 \) be convex and stably infinite; \(\Sigma_1 \cap \Sigma_2 = \emptyset \)
If satisfiability of conjunctions of literals in \(\mathcal{T}_i \) is in PTIME
Then satisfiability of conjunctions of literals in \(\mathcal{T}_1 \cup \mathcal{T}_2 \) is in PTIME
In general: non-deterministic procedure

Theorem. Let \mathcal{T}_1 and \mathcal{T}_2 be convex and stably infinite; $\Sigma_1 \cap \Sigma_2 = \emptyset$

If satisfiability of conjunctions of literals in \mathcal{T}_i is in NP

Then satisfiability of conjunctions of literals in $\mathcal{T}_1 \cup \mathcal{T}_2$ is in NP
Extensions of the Nelson-Oppen procedure

• relax the stable infiniteness requirement

• relax the requirement that the theories have disjoint signatures
Extensions of the Nelson-Oppen procedure

- relax the stable infiniteness requirement

 \[\text{[Tinelli,Zarba'03] One theory “shiny” (for each satisf. constraint we can compute a finite } k \text{ s.t. the theory has models of every cardinality } \lambda \geq k\]}

- relax the requirement that the theories have disjoint signatures

 \[\text{[Tinelli,Ringeissen'03] Theories sharing absolutely free constructors} \]
 \[\text{[Ghilardi'04] Model theoretical conditions.} \]

Main idea:

Find situations in which \(\mathcal{T}_i \) models of \(\phi_i, i = 1, 2 \) can be “amalgamated” to a \(\mathcal{T}_1 \cup \mathcal{T}_2 \) model of \(\phi_1 \land \phi_2 \).
Limitations of the Nelson-Oppen procedure

1. Does not fully exploit the properties of the component theories

No simplification mechanisms built-in

Improvements: Cynthia Engel: Shostak’s method

- Reasoning in a combinations of a theory with UIF
- use a canonizer and a solver
Limitations of the Nelson-Oppen procedure

Problem: The conditions which guarantee completeness of the Nelson-Oppen procedure are quite restrictive.

- Need to consider data structures with elements in a finite domain
- Sometimes the theories are tighter interrelated.

Example 1: Theories of arrays with elements of a certain type:

- **Sorts:** i (Indices), e (Elements), a (Arrays)
- **Theories:** T_i, T_e, T_a
- **Axioms for** T_a

\[
\forall a, i, e : \quad \text{read(write}(a, i, e), i) = e \\
\forall a, i, j, e : \quad i \neq j \rightarrow \text{read(write}(a, i, e), j) = \text{read}(a, j)
\]

Example 2: lists with elements of a certain type; length functions, ...
Theories of arrays

- **Array property fragment** [Bradley, Manna, Sipma’06]

 \(\exists \)-closed Bool. comb. of array property formulae & QF formulae (\(\exists \forall i \))

 Array property \((\forall i)(\varphi_I(i) \rightarrow \varphi_V(i))\)
 \(\varphi_I: \) positive Boolean combination of \(t \leq u \) or \(t = u \), \(\varphi_V: \) any universally quantified \(i \) occurs in an array read; no nestings

 Not: \(x < y \rightarrow a(x) < a(y) \)
 Not: \(x + 3 \leq 2 \ast y \)
 Not: \(x + 1 \leq c \)

 \(t, u \) ground index terms or variables

 Main idea: regard arrays as “functions”

 \(\text{read}(a, i) \leftrightarrow a(i) \)
 \(\text{write}(a, i_0, e) \leftrightarrow b = \text{write}(a, i_0, e) \)
 \(+ \) Updates

 \(\forall j(j = i_0 \rightarrow b(j) = e) \)
 \(i_1 = i_0 - 1, i_2 = i_0 + 1 \)
 \(\forall j(j \leq i_1 \lor j \geq i_2 \rightarrow b(j) = a(j)) \)
Theories of arrays

- **Array property fragment** [Bradley,Manna,Sipma’06]

 \exists-closed Bool. comb. of array property formulae & QF formulae ($\exists\forall_i$)

 Array property $\left(\forall i\right)\left(\varphi_I(i) \rightarrow \varphi_V(i)\right)$

 Not: $x < y \rightarrow a(x) < a(y)$

 φ_I: positive Boolean combination of $t \leq u$ or $t = u$, Not: $x + 3 \leq 2 \times y$

 where t, u ground index terms or variables

 $x + 1 \leq c$

 φ_V: any universally quantified i occurs in a direct array read; no nestings

 Shuyi Weng: What’s decidable about arrays
Theories of recursive data structures with size

Theories of constructors/selectors

Lists (cons/car/cdr)

Binary trees (tree/left/right)

Size functions:

Lists:

\[
\text{size}(\text{nil}) = 0
\]

\[
\text{size}(\text{cons}(a, l)) = 1 + \text{size}(l)
\]

Trees

\[
\text{size}(\text{nil}) = 0
\]

\[
\text{size}(\text{tree}(t_1, t_2)) = 1 + \text{size}(t_1) + \text{size}(t_2)
\]

Kilian Laudt: Decision procedures
Overview

• **Reasoning in standard theories**

 A *crash course*: Decidable logical theories and theory fragments

• **Reasoning in complex theories**

 Modular reasoning in combinations of theories

 disjoint signature

• **Applications**