Advanced Topics in Theoretical Computer Science

Part 3: Recursive Functions (3)

15.12.2021

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de
Contents

• Recapitulation: Turing machines and Turing computability
• Register machines (LOOP, WHILE, GOTO)
• Recursive functions
• The Church-Turing Thesis
• Computability and (Un-)decidability
• Complexity
• Other computation models: e.g. Büchi Automata, λ-calculus
3. Recursive functions

- Introduction/Motivation
- Primitive recursive functions $\leftrightarrow P$
- $P = \text{LOOP}$
- μ-recursive functions $\leftrightarrow F_\mu$
- $F_\mu = \text{WHILE}$
- Summary
Definition (Primitive recursive functions)

- **Atomic functions**: The functions
 - Null 0
 - Successor +1
 - Projection π_i^k ($1 \leq i \leq k$)

are primitive recursive.

- **Composition**: The functions obtained by composition from primitive recursive functions are primitive recursive.

- **Primitive recursion**: The functions obtained by primitive recursion from primitive recursive functions are primitive recursive.

The set of all primitive recursive functions is the smallest set with the properties above.

Notation: $\mathcal{P} = \text{The set of all primitive recursive functions}$
Bounded μ operator

Definition. Let $g : \mathbb{N}^{k+1} \to \mathbb{N}$ be a function.
The bounded μ operator is defined as follows:

$$\mu_{i < m} i \ (g(n, i) = 0) := \begin{cases} i_0 & \text{if } g(n, i_0) = 0, \ i_0 < m \\
 & \text{and for all } j < i_0 \ g(n, j) \neq 0 \\
0 & \text{if } g(n, j) \neq 0 \text{ for all } 0 \leq j < m \\
 & \text{or } m = 0 \end{cases}$$

$\mu_{i < m} i \ (g(n, i) = 0)$ is the smallest $i < m$ such that $g(n, i) = 0$

Theorem. If $g : \mathbb{N}^{k+1} \to \mathbb{N}$ is a primitive recursive function
then the function $f : \mathbb{N}^{k+1} \to \mathbb{N}$ defined below is also primitive recursive.

$$f(n, m) = \mu_{i < m} i \ (g(n, i) = 0)$$
Theorem: The following functions are primitive recursive:

1. The Boolean function $| : \mathbb{N} \times \mathbb{N} \rightarrow \{0, 1\}$ defined by:
 \[
 |(n, m) = \begin{cases}
 1 & \text{if } n \text{ divides } m \\
 0 & \text{otherwise}
 \end{cases}
 \]

2. The Boolean function $\text{prime} : \mathbb{N} \rightarrow \{0, 1\}$ defined by:
 \[
 \text{prime}(n) = \begin{cases}
 1 & \text{if } n \text{ prime} \\
 0 & \text{otherwise}
 \end{cases}
 \]

3. The function $p : \mathbb{N} \rightarrow \mathbb{N}$ defined by: $p(n) = p_n$, the n-th prime number.

4. The function $D : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ defined by: $D(n, i) = k$ iff k is the power of the i-th prime number in the prime number decomposition of n.
 \[
 D(n, i) = \max(\{j \mid n \mod p(i)^j = 0\})
 \]
3. Recursive functions

- Introduction/Motivation
- Primitive recursive functions \(\mapsto P \)
- \(P = \text{LOOP} \)
- \(\mu\)-recursive functions \(\mapsto F_\mu \)
- \(F_\mu = \text{WHILE} \)
- Summary
Goal

Show that $\mathcal{P} = \text{LOOP}$

Idea:

To show that $\mathcal{P} \supseteq \text{LOOP}$ we have to show that every LOOP computable function can be expressed as a primitive recursive function.

For this, we will encode the contents of arbitrarily many registers in one natural number (used as input for this primitive recursive function).

For this encoding we will use Gödelisation. We will need to show that Gödelisation is primitive recursive.

To show that $\mathcal{P} \subseteq \text{LOOP}$ we have to show that:

- all atomic primitive recursive functions are LOOP computable, and
- LOOP is closed under composition of functions and primitive recursion.
To show: Gödelisierung is primitive recursive

Informally:
- Coding number sequences as a number
- Corresponding decoding function (projection) are primitiv recursive

More precise formulation:

There exist primitive recursive functions

\[K^r : \mathbb{N}^r \rightarrow \mathbb{N} \quad (r \geq 1) \]
\[D_i : \mathbb{N} \rightarrow \mathbb{N} \quad (1 \leq i \leq r) \]

with:

\[D_i(K^r(n_1, \ldots, n_r)) = n_i \]
Gödelisation

To show: Gödelisation is primitive recursive

Informally:
- Coding number sequences as a number
- Corresponding decoding function (projection)

are primitive recursive

Recall:

Gödelisation: Coding number sequences as a number

Bijection K between $\bigcup_{r \in \mathbb{N}} \mathbb{N}^r$ and \mathbb{N}:

$K^r : \mathbb{N}^r \rightarrow \mathbb{N}$, defined by:

$$K^r(n_1, \ldots, n_r) = \prod_{i=1}^{r} p(i)^{n_i}.$$

$n \in \mathbb{N}^r \mapsto K(n) = K_r(n)$

Decoding: The inverses $D_i : \mathbb{N} \rightarrow \mathbb{N}$ of K^r defined by $D_i(n) = D(n, i)$
Gödelisation

Bijection K between $\bigcup_{r \in \mathbb{N}} \mathbb{N}^r$ and \mathbb{N}:

$K^r : \mathbb{N}^r \to \mathbb{N}$, defined by:

$$K^r(n_1, \ldots, n_r) = \prod_{i=1}^{r} p(i)^{n_i}.$$

$n \in \mathbb{N}^r \mapsto K(n) = K_r(n)$

$D_i : \mathbb{N} \to \mathbb{N}$, $1 \leq i \leq r$, defined by $D_i(n) = D(n, i)$

Theorem. K^r and D_1, \ldots, D_r are primitive recursive.

Lemma.

1. $D_i(K^r(n_1, \ldots, n_r)) = n_i$ for all $1 \leq i \leq r$.
2. $K^r(n_1, \ldots, n_r) = K^{r+1}(n_1, \ldots, n_r, 0)$

In general, $D_i(K^r(n_1, \ldots, n_r)) = 0$ if $i > r$.
Gödelisation

Notation:

\[K^r(n_1, \ldots, n_r) = \langle n_1, \ldots, n_r \rangle \]
\[D_i(n) = (n)_i \]

For \(r = 0 \):

\[\langle \rangle = 1 \]
\[(\langle \rangle)_i = 0 \]
Gödelisation: Applications

Theorem (Simultaneous Recursion)

If
\[f_1(n, 0) = g_1(n) \]
\[\ldots \]
\[f_r(n, 0) = g_r(n) \]
\[f_1(n, m+1) = h_1(n, m, f_1(n, m), \ldots, f_r(n, m)) \]
\[\ldots \]
\[f_r(n, m+1) = h_r(n, m, f_1(n, m), \ldots, f_r(n, m)) \]

and if \(g_1, \ldots, g_r, h_1, \ldots, h_r \) are primitive recursive
then \(f_1, \ldots, f_r \) are primitive recursive.
Example

Let f_1 and f_2 be defined by simultaneous recursion as follows:

\[
\begin{align*}
 f_1(0) &= 0 \\
 f_2(0) &= 1 \\

 f_1(n + 1) &= f_2(n) \\
 f_2(n + 1) &= f_1(n) + f_2(n)
\end{align*}
\]
Example

Let \(f_1 \) and \(f_2 \) be defined by simultaneous recursion as follows:

\[
\begin{align*}
 f_1(0) &= 0 & g_1 &= 0 \\
 f_2(0) &= 1 & g_2 &= 1 \\
 f_1(n + 1) &= f_2(n) & h_1(n, f_1(n), f_2(n)) &= f_2(n) & h_1 = \pi_3^3 \\
 f_2(n + 1) &= f_1(n) + f_2(n) & h_2(n, f_1(n), f_2(n)) &= f_1(n) + f_2(n) & h_2 = + \circ (\pi_2^3, \pi_3^3)
\end{align*}
\]
Theorem (Simultaneous Recursion)

If

\[f_1(n, 0) = g_1(n) \]

\[\ldots \]

\[f_r(n, 0) = g_r(n) \]

\[f_1(n, m+1) = h_1(n, m, f_1(n, m), \ldots, f_r(n, m)) \]

\[\ldots \]

\[f_r(n, m+1) = h_r(n, m, f_1(n, m), \ldots, f_r(n, m)) \]

and if \(g_1, \ldots, g_r, h_1, \ldots, h_r \) are primitive recursive

then \(f_1, \ldots, f_r \) are primitive recursive.
Gödelisation: Applications

Proof: We define a new function f by:

$$f(n, m) = \langle f_1(n, m), \ldots, f_r(n, m) \rangle$$

f can be computed by primitive recursion as follows:

$$f(n, 0) = \langle g_1(n), \ldots, g_r(n) \rangle$$

$$f(n, m + 1) = \langle h_1(n, m, (f(n, m))_1, \ldots, (f(n, m))_r), \ldots, h_r(n, m, (f(n, m))_1, \ldots, (f(n, m))_r) \rangle$$

$K^r \circ (g_1, \ldots, g_r)$ and $K^r \circ (h_1, \ldots, h_r)$ are primitive recursive.

For all $1 \leq i \leq r$, $f_i(n, m) = D_i(f(n, m))$.

Since $f_i = D_i \circ f$ is primitive recursive, it follows that f_i is primitive recursive for all $1 \leq i \leq r$.
Goal

Show that $\mathcal{P} = \text{LOOP}$

Idea:

To show that $\mathcal{P} \supseteq \text{LOOP}$ we have to show that every LOOP computable function can be expressed as a primitive recursive function.

For this, we will encode the contents of arbitrarily many registers in one natural number (used as input for this primitive recursive function).

For this encoding we use Gödelisation. We showed that Gödelisation is primitive recursive.

To show that $\mathcal{P} \subseteq \text{LOOP}$ we have to show that:
- all atomic primitive recursive functions are LOOP computable, and
- LOOP is closed under composition of functions and primitive recursion.
\(\mathcal{P} = \text{LOOP} \)

Theorem \((\mathcal{P} = \text{LOOP}) \). The set of all LOOP computable functions is equal to the set of all primitive recursive functions

Proof (Idea)

1. \(\mathcal{P} \subseteq \text{LOOP} \)
\[\mathcal{P} = \text{LOOP} \]

Theorem (\(\mathcal{P} = \text{LOOP} \)). The set of all LOOP computable functions is equal to the set of all primitive recursive functions

Proof (Idea)

1. \(\mathcal{P} \subseteq \text{LOOP} \)

 1a: We show that all atomic primitive recursive functions are LOOP computable

 1b: We show that LOOP is closed under composition of functions

 1c: We show that LOOP is closed under primitive recursion
Theorem ($\mathcal{P} = \text{LOOP}$). The set of all LOOP computable functions is equal to the set of all primitive recursive functions

Proof (Idea)

1. $\mathcal{P} \subseteq \text{LOOP}$

1a: All atomic primitive recursive functions are LOOP computable

\[
\begin{align*}
0 & : \quad x_1 := x_1 - 1 \quad // \text{NOP} \\
+1 & : \quad x_2 := x_1 + 1 \\
\pi^k & : \quad x_{k+1} := x_j
\end{align*}
\]
Proof (ctd) 1b: LOOP is closed under composition of functions

Let \(f : \mathbb{N}^k \rightarrow \mathbb{N} \) with \(f(n) = h(g_1(n), \ldots, g_r(n)) \)

Assume that:

- \(P_h \) computes \(h \)
- \(P_{g_j} \) computes \(g_j \) \((1 \leq j \leq r)\)

Idea: \(f \) is computed by the program \(P_f: \)

\[P'_{g_1}; \ldots; P'_{g_r}; P'_h \]

where \(P'_{g_i} \) differs from \(P_{g_i} \) (and \(P'_h \) from \(P_h \)) only up to the fact that registers have been renamed/the contents stored in them copied.
\[P = \text{LOOP} \]

Proof (ctd) 1b: LOOP is closed under composition of functions

Let \(f : \mathbb{N}^k \to \mathbb{N} \) with \(f(n) = h(g_1(n), \ldots, g_r(n)) \)

Assume that:

- \(P_h \) computes \(h \)
- \(P_{g_j} \) computes \(g_j \) \((1 \leq j \leq r)\)

More precisely: \(P'_{g_i} \): obtained from \(P_{g_i} \) by renaming register \(x_{k+i} \) to \(x_{k+r+i} \).

\[\mapsto \text{keep free registers } x_{k+1}, \ldots, x_{k+r} \text{ for writing result of } P_{g_1}, \ldots, P_{g_r} \]

\(P'_h \): obtained from \(P_h \) by renaming \(x_j \) to \(x_{k+j} \).

\[P_f : \quad P'_{g_1}; x_{k+1} := x_{k+r+1}; x_{k+r+1} := 0; \ldots \]
\[P'_{g_r}; x_{k+r} := x_{k+r+1}; x_{k+r+1} := 0; \]
\[P'_h; x_{k+1} := x_{k+r+1}; x_{k+2} := 0; \ldots; x_{k+r+1} := 0 \]
\[P = \text{LOOP} \]

Proof (ctd) 1c: LOOP is closed under primitive recursion

Assume that \(f : \mathbb{N}^{k+1} \rightarrow \mathbb{N} \) is such that:

\[
\begin{align*}
 f(n, 0) &= g(n) \\
 f(n, m + 1) &= h(n, m, f(n, m))
\end{align*}
\]

Then \(f \) is computed by the following LOOP Program:

\[
\begin{align*}
 x_{\text{store}m} &:= x_{k+1}; \\
 x_{k+1} &:= 0; \\
 P'_{g}; \\
 \text{loop } x_{\text{store}m} \text{ do} \\
 \quad P_h; \\
 \quad x_{k+2} := x_{k+2+1}; \\
 \quad x_{k+2+1} := 0; \\
 \quad x_{k+1} := x_{k+1} + 1 \\
 \text{end;} \\
 x_{\text{store}m} := 0 \\
\end{align*}
\]

// Number of loops (m)
// Actual value of \(m \) (at the beginning 0)
// Computes \(f(n, 0) \); result in \(x_{k+2} \)

// Computes \(f(n, x_{k+1} + 1) = h(n, m, f(n, m)) \)
// \(x_{k+2} = f(n, x_{k+1} + 1) \)
// \(m = m + 1 \)
Proof (ctd) \(1c: \text{LOOP is closed under primitive recursion}\)

Assume that \(f : \mathbb{N}^{k+1} \rightarrow \mathbb{N}\) is such that:

\[
f(n, 0) = g(n)
\]
\[
f(n, m + 1) = h(n, m, f(n, m))
\]

Then \(f\) is computed by the following LOOP Program:

\[
\begin{align*}
x_{\text{store}_m} & := x_{k+1}; \quad \text{\(//\) Number of loops (m)}
x_{k+1} & := 0; \quad \text{\(//\)Actual value of \(m\) (at the beginning 0)}
P'_g; \quad \text{\(//\)Computes \(f(n, 0);\) result in \(x_{k+2}\)}
\text{loop } x_{\text{store}_m} \text{ do}\n\quad P_h;
\quad x_{k+2} := x_{k+2+1}; \quad \text{(e.g. output in } x_{k+2}, \text{ not in } x_{k+1})
\quad x_{k+2+1} := 0;
\quad x_{k+1} := x_{k+1} + 1
\text{end;}
x_{\text{store}_m} := 0
\end{align*}
\]

where \(P'_g\) differs from \(P_g\) only in the fact that some registers have been renamed
\[\mathcal{P} = \text{LOOP} \]

Theorem (\(\mathcal{P} = \text{LOOP} \)). The set of all LOOP computable functions is equal to the set of all primitive recursive functions.

Proof (Idea)

2. **\(\text{LOOP} \subseteq \mathcal{P} \)**

Let \(P \) be a LOOP program which:

- uses registers \(x_1, \ldots, x_l \)
- has \(m \) loop instructions

We construct a primitive recursive function \(f_P \) which “simulates” \(P \)

\[
f_P(\langle n_1, \ldots, n_l, h_1, \ldots, h_m \rangle) = \langle n'_1, \ldots, n'_l, h_1, \ldots, h_m \rangle
\]

if and only if:

- \(P \) started with \(n_i \) in register \(x_i \) terminates with \(n'_i \) in \(x_i \) \((1 \leq i \leq l)\).

In \(h_j \) it is “recorded” how long loop \(j \) should still run.
\[P = \text{LOOP} \]

Proof (ctd)

At the beginning and at the end of the simulation of \(P \) we have

\[h_1 = 0, \ldots, h_m = 0. \]

Assume that we can construct a primitive recursive function \(f_P \) which “simulates” \(P \), i.e.
\[f_P(\langle n_1, \ldots, n_l, h_1, \ldots, h_m \rangle) = \langle n'_1, \ldots, n'_l, h_1, \ldots, h_m \rangle \]
if and only if:

\(P \) started with \(n_i \) in register \(x_i \) terminates with \(n'_i \) in \(x_i \) (\(1 \leq i \leq l \)).

The function computed by the LOO\(P \) program \(P \) is then primitive recursive, since:

\[g(n_1, \ldots, n_l) = g(n_1, \ldots, n_k, 0, \ldots, 0) = (f_P(\langle n_1, \ldots, n_l, 0, 0, \ldots \rangle))_{k+1} \]

(the input in registers \(x_1, \ldots, x_k \), all other registers contain 0, output in register \(x_{k+1} \))
\(\mathcal{P} = \text{LOOP} \)

Proof (ctd) **Construction of** \(f_\mathcal{P} \):

2a: \(P \) is \(x_i := x_i + 1 \)

\[
f_\mathcal{P}(n) = \langle (n)_1, \ldots, (n)_{i-1}, (n)_i + 1, (n)_{i+1}, \ldots \rangle = n \ast p(i)
\]

\(P \) is \(x_i := x_i - 1 \)

\[
f_\mathcal{P}(n) = \langle (n)_1, \ldots, (n)_{i-1}, (n)_i - 1, (n)_{i+1}, \ldots \rangle
\]

\[
f_\mathcal{P}(n) = \begin{cases}
 n & D(n, i) = 0 \\
 n \text{ DIV } p(i) & \text{otherwise}
\end{cases}
\]
\(\mathcal{P} = \text{LOOP} \)

Proof (ctd) **Construction of** \(f_P \):

2a: \(P \) is \(x_i := x_i + 1 \)

\[
 f_P(n) = \langle (n)_1, \ldots, (n)_{i-1}, (n)_i + 1, (n)_{i+1}, \ldots \rangle
\]

\(P \) is \(x_i := x_i - 1 \)

\[
 f_P(n) = \langle (n)_1, \ldots, (n)_{i-1}, (n)_i - 1, (n)_{i+1}, \ldots \rangle
\]

2b: \(P \) is \(P_1; P_2 \)

\[
 f_P = f_{P_2} \circ f_{P_1} \quad \text{i.e.} \quad f_P(n) = f_{P_2}(f_{P_1}(n))
\]
\[P = \text{LOOP} \]

Proof (ctd) **Construction of** \(f_P \):

2c: \(P \) is loop \(x_i \) do \(P_1 \) end

Let \(f_{P_1} \) be the p.r. function which computes what \(P_1 \) computes.

Initialize the \(j \)-th loop:

\[
f_1(n) = \langle (n)_1, \ldots, (n)_l, (n)_{l+1}, \ldots, (n)_{l+j-1}, (n)_j, (n)_{l+j+1}, \ldots \rangle
\]

Let the \(j \)-th loop run:

\[
f_2(n) = \begin{cases} n & \text{if } (n)_{l+j} = 0 \\ f_{P_1}(f_2(\langle \ldots, (n)_{l+j} - 1, \ldots \rangle)) & \text{otherwise} \end{cases}
\]

Then:

\[
f_P(n) = f_2(f_1(n)) = (f_2 \circ f_1)(n)
\]
Proof (ctd) **Construction of** f_P:

2c: P is loop x_i do P_1 end

Let f_{P_1} be the p.r. function which computes what P_1 computes.

Initialize the j-th loop:

$$f_1(n) = \langle (n)_1, \ldots, (n)_l, (n)_{l+1}, \ldots (n)_{l+j-1}, (n)_i, (n)_{l+j+1}, \ldots \rangle$$

$$f_1(n) = n \ast p(l + j)^{(n)i}. \quad \text{if} \ (n)_{l+j} = 0 \text{ before the loop is executed}$$

Let the j-th loop run:

$$f_2(n) = \begin{cases}
 n & \text{if} \ (n)_{l+j} = 0 \\
 f_{P_1}(f_2(n \ DIV \ p(l + j))) & \text{otherwise}
\end{cases}$$

Then:

$$f_P = f_2 \circ f_1$$
Proof (ctd) We show that f_2 is primitive recursive.

Let $F : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be defined by:

\begin{align*}
F(n, 0) &= n \\
F(n, m + 1) &= f_{P_1}(F(n, m))
\end{align*}

Then $F \in \mathcal{P}$.

It can be checked that $f_2(n) = F(n, D(n, l + j))$. Therefore, $f_2 \in \mathcal{P}$.

Since f_1, f_2 are primitive recursive, so is $f_\mathcal{P} = f_2 \circ f_1$.
3. Recursive functions

- Introduction/Motivation
- Primitive recursive functions $\mapsto P$
- $P = \text{LOOP}$
- μ-recursive functions $\mapsto F_\mu$
- $F_\mu = \text{WHILE}$
- Summary