Advanced Topics in Theoretical Computer Science

Part 2: Register machines (3)

24.11.2021

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de
Contents

- Recapitulation: Turing machines and Turing computability
- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity
- Other computation models: e.g. Büchi Automata, λ-calculus
2. Register Machines

- Register machines (Random access machines)
- LOOP Programs
- WHILE Programs
- GOTO Programs
- Relationships between LOOP, WHILE, GOTO
- Relationships between register machines and Turing machines
Until now

- Register machines (definition; state; input/output; semantics)
 - Computed function
 - Computable functions (LOOP, WHILE, GOTO, TM)

- LOOP Programs (syntax, semantics)
 - Every LOOP program terminates for every input
 - All LOOP computable functions are total
 - Additional instructions

- WHILE Programs (syntax, semantics)
 - WHILE programs do not always terminate
 - WHILE computable functions can be undefined for some inputs

- GOTO Programs (syntax, semantics)
 - GOTO programs do not always terminate
Definition

A register machine is a machine consisting of the following elements:

- A finite (but unbounded) number of registers $x_1, x_2, x_3 \ldots, x_n$; each register contains a natural number.
- A LOOP-, WHILE- or GOTO-program.
Register Machines: Computable function

Definition. A function f is

- **LOOP computable** if there exists a register machine with a LOOP program, which computes f
- **WHILE computable** if there exists a register machine with a WHILE program, which computes f
- **GOTO computable** if there exists a register machine with a GOTO program, which computes f
- **TM computable** if there exists a Turing machine which computes f
Computable functions

\[
\begin{align*}
\text{LOOP} & = \text{Set of all LOOP computable functions} \\
\text{WHILE} & = \text{Set of all total WHILE computable functions} \\
\text{WHILE}^{\text{part}} & = \text{Set of all WHILE computable functions} \quad \text{(including the partial ones)} \\
\text{GOTO} & = \text{Set of all total GOTO computable functions} \\
\text{GOTO}^{\text{part}} & = \text{Set of all GOTO computable functions} \quad \text{(including the partial ones)} \\
\text{TM} & = \text{Set of all total TM computable functions} \\
\text{TM}^{\text{part}} & = \text{Set of all TM computable functions} \quad \text{(including the partial ones)}
\end{align*}
\]
Relationships between LOOP, WHILE, GOTO

Theorem. LOOP \subseteq WHILE (every LOOP computable function is WHILE computable)

Corollary

The instructions defined in the context of LOOP programs:

- $x_i := c$
- $x_i := x_j$
- $x_i := x_j + c$
- $x_i := x_j + x_k$
- $x_i = x_j * x_k,$

if $x_i = 0$ then P_i else P_j

if $x_i \leq x_j$ then P_i else P_j

can also be used in WHILE programs.
Theorem.
(1) \(\text{WHILE} = \text{GOTO} \)
(2) \(\text{WHILE}^{\text{part}} = \text{GOTO}^{\text{part}} \)
Theorem.

(1) $\text{WHILE} = \text{GOTO}$
(2) $\text{WHILE}^{\text{part}} = \text{GOTO}^{\text{part}}$

Proof:

To show:

I. $\text{WHILE} \subseteq \text{GOTO}$ and $\text{WHILE}^{\text{part}} \subseteq \text{GOTO}^{\text{part}}$

II. $\text{GOTO} \subseteq \text{WHILE}$ and $\text{GOTO}^{\text{part}} \subseteq \text{WHILE}^{\text{part}}$
WHILE and GOTO

Theorem.
(1) WHILE = GOTO
(2) WHILE$^{\text{part}}$ = GOTO$^{\text{part}}$

Proof:

I. WHILE \subseteq GOTO and WHILE$^{\text{part}}$ \subseteq GOTO$^{\text{part}}$

It is sufficient to prove that while $x_i \neq 0$ do P end can be simulated with GOTO instructions.

We assume that P can be simulated with a GOTO program \overline{P} (i.e. that we construct equivalent GOTO programs “inside out”).
WHILE and GOTO

Proof (ctd.)

while $x_i \neq 0$ do P end

is replaced by:

\[j_1 : \text{if } x_i = 0 \text{ goto } j_3; \]
\[\overline{P'}; \]
\[j_2 : \text{if } x_n = 0 \text{ goto } j_1; \]
\[j_3 : x_n := x_n - 1 \]

** Since $x_n = 0$ unconditional jump **

where:

- x_n is a new register, which was not used before.
- $\overline{P'}$ is obtained from \overline{P} by possibly renaming the indices.
WHILE and GOTO

Proof (ctd.)

while $x_i \neq 0$ do P end

is replaced by:

\begin{align*}
\text{j}_1 & : \quad \text{if } x_i = 0 \text{ goto } \text{j}_3; \\
\overline{P}' & ; \\
\text{j}_2 & : \quad \text{if } x_n = 0 \text{ goto } \text{j}_1; \quad \text{** Since } x_n = 0 \text{ unconditional jump **} \\
\text{j}_3 & : \quad x_n := x_n - 1
\end{align*}

where:

\begin{itemize}
 \item x_n is a new register, which was not used before.
 \item \overline{P}' is obtained from \overline{P} by possibly renaming the indices.
\end{itemize}

Remark: Totality is preserved by this transformation. Semantics is the same.
Proof (ctd.)

Using the fact that \texttt{while } \texttt{x_i \neq 0 \ do \ P \ end} can be simulated by a GOTO program we can show (by structural induction) that every WHILE program can be simulated by a GOTO program.
Relationships between LOOP, WHILE, GOTO

Theorem. WHILE = GOTO; WHILE\(^\text{part}\) = GOTO\(^\text{part}\)

Proof: I. WHILE \(\subseteq\) GOTO; WHILE\(^\text{part}\) \(\subseteq\) GOTO\(^\text{part}\) (WHILE programs expressible as GOTO programs). Proof by structural induction.
Theorem. WHILE = GOTO; WHILE$^\text{part}$ = GOTO$^\text{part}$

Proof: I. WHILE \subseteq GOTO; WHILE$^\text{part}$ \subseteq GOTO$^\text{part}$ (WHILE programs expressible as GOTO programs). Proof by structural induction.

Induction basis: We show that the property is true for all atomic WHILE programs, i.e. for programs of the form $x_i := x_i \pm 1$ (expressible as $j : x_i := x_i \pm 1$).
Relationships between LOOP, WHILE, GOTO

Theorem. WHILE = GOTO; WHILE\(^{\text{part}}\) = GOTO\(^{\text{part}}\)

Proof: I. WHILE \(\subseteq\) GOTO; WHILE\(^{\text{part}}\) \(\subseteq\) GOTO\(^{\text{part}}\) (WHILE programs expressible as GOTO programs). Proof by structural induction.

Induction basis: We show that the property is true for all atomic WHILE programs, i.e. for programs of the form \(x_i := x_i \pm 1\) (expressible as \(j : x_i := x_i \pm 1\)).

Let \(P\) be a non-atomic WHILE program.

Induction hypothesis: We assume that the property holds for all “subprograms” of \(P\).

Induction step: We show that then it also holds for \(P\). Proof depends on form of \(P\).
Relationships between LOOP, WHILE, GOTO

Theorem. WHILE = GOTO; WHILE\(^{\text{part}}\) = GOTO\(^{\text{part}}\)

Proof: I. WHILE \(\subseteq\) GOTO; WHILE\(^{\text{part}}\) \(\subseteq\) GOTO\(^{\text{part}}\) (WHILE programs expressible as GOTO programs). Proof by structural induction.

Induction basis: We show that the property is true for all atomic WHILE programs, i.e. for programs of the form \(x_i := x_i \pm 1\) (expressible as \(j : x_i := x_i \pm 1\)).

Let \(P\) be a non-atomic WHILE program.

Induction hypothesis: We assume that the property holds for all “subprograms” of \(P\).

Induction step: We show that then it also holds for \(P\). Proof depends on form of \(P\).

Case 1: \(P = P_1; P_2\). By the induction hypothesis, there exist GOTO programs \(P'_1, P'_2\) with \(\Delta(P_i) = \Delta(P'_i)\). We can assume w.l.o.g. that the indices used for labelling the instructions are disjoint. Let \(P' = P'_1; P'_2\) (a GOTO program). We can show that \(\Delta(P')(s_1, s_2)\) iff \(\Delta(P)(s_1, s_2)\) as before.
Relationships between LOOP, WHILE, GOTO

Theorem. WHILE = GOTO; WHILE\(^{\text{part}}\) = GOTO\(^{\text{part}}\)

Proof: I. WHILE ⊆ GOTO; WHILE\(^{\text{part}}\) ⊆ GOTO\(^{\text{part}}\) (WHILE programs expressible as GOTO programs). Proof by structural induction.

Induction basis: We show that the property is true for all atomic WHILE programs, i.e. for programs of the form \(x_i := x_i \pm 1\) (expressible as \(j : x_i := x_i \pm 1\)).

Let \(P\) be a non-atomic WHILE program.

Induction hypothesis: We assume that the property holds for all “subprograms” of \(P\).

Induction step: We show that then it also holds for \(P\). Proof depends on form of \(P\).

Case 1: \(P = P_1; P_2\). By the induction hypothesis, there exist GOTO programs \(P_1', P_2'\) with \(\Delta(P_i) = \Delta(P_i')\). We can assume w.l.o.g. that the indices used for labelling the instructions are disjoint. Let \(P' = P_1'; P_2'\) (a GOTO program). We can show that \(\Delta(P')(s_1, s_2)\) iff \(\Delta(P)(s_1, s_2)\) as before.

Case 2: \(P = \text{while } x_i \neq 0 \text{ do } P_1 \text{ end }\). By the induction hypothesis, there exists a GOTO program \(\overline{P}_1\) such that \(\Delta(P_1) = \Delta(\overline{P}_1)\). Let \(P'\) be the following GOTO program:

\(j_1 : \text{if } x_i = 0 \text{ goto } j_3; \overline{P}_1'; j_2 : \text{if } x_n = 0 \text{ goto } j_1; j_3 : x_n := x_n - 1\)

(where \(\overline{P}_1'\) is obtained from \(\overline{P}_1\) by possibly renaming some indices).

It can be checked that \(\Delta(P')(s_1, s_2)\) iff \(\Delta(P)(s_1, s_2)\).
WHILE and GOTO

Theorem.

(1) WHILE = GOTO
(2) WHILEpart = GOTOpart

Proof:

II. GOTO \subseteq WHILE and GOTOpart \subseteq WHILEpart

It is sufficient to prove that every GOTO program can be simulated with WHILE instructions.
WHILE and GOTO

Theorem.

(1) WHILE = GOTO
(2) WHILE$^{\text{part}}$ = GOTO$^{\text{part}}$

Proof:

II. GOTO \subseteq WHILE and GOTO$^{\text{part}}$ \subseteq WHILE$^{\text{part}}$

It is sufficient to prove that every GOTO program can be simulated with WHILE instructions.

We make the following assumptions (w.l.o.g):

1) All indices occurring in the program are ≥ 1
2) All indices used for goto instructions occur as labels of instructions
Proof (ctd.)

\[j_1 : l_1; j_2 : l_2; \ldots; j_k : l_k \]
\(\text{ (w.l.o.g. we can assume that } j_i \geq 1 \text{ for all } 1 \leq i \leq k \) }

is replaced by the following while program:

\[
\begin{align*}
\text{x_index} & := j_1; \\
\text{while } \text{x_index} \neq 0 \text{ do} \\
& \quad \text{if } \text{x_index} = j_1 \text{ then } l'_1 \text{ end;} \\
& \quad \text{if } \text{x_index} = j_2 \text{ then } l'_2 \text{ end;} \\
& \quad \ldots \\
& \quad \text{if } \text{x_index} = j_k \text{ then } l'_k \text{ end} \\
\text{end}
\end{align*}
\]
WHILE and GOTO

Proof (ctd.)

\[j_1 : l_1; j_2 : l_2; \ldots; j_k : l_k \] (w.l.o.g. we can assume that \(j_i \geq 1 \) for all \(1 \leq i \leq k \))

is replaced by the following while program:

\[
\begin{align*}
\text{x}_{\text{index}} & := j_1; \\
\text{while} \quad \text{x}_{\text{index}} \neq 0 & \text{ do} \\
\quad \text{if} \quad \text{x}_{\text{index}} = j_1 & \text{ then } l'_1 \text{ end; } \\
\quad \text{if} \quad \text{x}_{\text{index}} = j_2 & \text{ then } l'_2 \text{ end; } \\
\quad \ldots & \text{ } \\
\quad \text{if} \quad \text{x}_{\text{index}} = j_k & \text{ then } l'_k \text{ end } \text{ end} \\
\end{align*}
\]

For \(1 \leq n < k \):

If \(I_n \) is \(x_i \) := \(x_i \pm 1 \):

\[
\begin{align*}
\text{l}'_n \text{ is } x_i & := x_i \pm 1; \text{x}_{\text{index}} := j_{n+1} \\
\end{align*}
\]

If \(I_n \) is if \(x_i = 0 \) goto \(j_{\text{goto}} \):

\[
\begin{align*}
\text{l}'_n \text{ is } \text{ if} \quad x_i = 0 \quad \text{then} \quad \text{x}_{\text{index}} & := j_{\text{goto}} \\
\text{else} \quad \text{x}_{\text{index}} & := j_{n+1} \text{ end } \\
\end{align*}
\]

In addition, \(j_{k+1} = 0 \)
GOTO and WHILE are equally powerful

Consequences of the proof:

Corollary 1

The instructions defined in the context of LOOP programs:

\[\begin{align*}
 x_i &:= c \\
 x_i &:= x_j \\
 x_i &:= x_j + c \\
 x_i &:= x_j + x_k \\
 x_i &:= x_j \times x_k,
\end{align*} \]

if \(x_i = 0 \) then \(P_i \) else \(P_j \)

if \(x_i \leq x_j \) then \(P_i \) else \(P_j \)

can also be used in GOTO programs.
GOTO and WHILE are equally powerful

Consequences of the proof:

Corollary 2
Every WHILE computable function can be computed by a **WHILE+IF** program with **one while loop only**.
GOTO and WHILE are equally powerful

Consequences of the proof:

Corollary 2
Every WHILE computable function can be computed by a **WHILE+IF** program with **one while loop only**.

Proof: We showed that:

(i) every WHILE program can be simulated by a GOTO program

(ii) every GOTO program can be simulated by a WHILE program with only one loop, containing also some if instructions (WHILE-IF program).

Let P be a WHILE program. P can be simulated by a GOTO program P'. P' can be simulated by a WHILE-IF program with one WHILE loop only.
GOTO and WHILE are equally powerful

Consequence of the proof:

Every WHILE computable function can be computed by a WHILE+IF program with one while loop only.

Other consequences

- GOTO programming is not more powerful than WHILE programming
GOTO and WHILE are equally powerful

Consequence of the proof:

Every WHILE computable function can be computed by a WHILE+IF program with one while loop only.

Other consequences

- GOTO programming is not more powerful than WHILE programming
 “Spaghetti-Code” (GOTO) is not more powerful than “structured code” (WHILE)
Register Machines: Overview

- Register machines (Random access machines)
- LOOP programs
- WHILE programs
- GOTO programs
- Relationships between LOOP, WHILE, GOTO
- Relationships between register machines and Turing machines
Relationships

Already shown:

\[\text{LOOP} \subseteq \text{WHILE} = \text{GOTO} \not\subseteq \text{WHILE}^{\text{part}} = \text{GOTO}^{\text{part}} \]
Relationships

Already shown:

\[
\text{LOOP} \subseteq \text{WHILE} = \text{GOTO} \not\subseteq \text{WHILE}^\text{part} = \text{GOTO}^\text{part}
\]

To be proved:

- LOOP \neq \text{WHILE}
- WHILE = \text{TM} and WHILE^\text{part} = \text{TM}^\text{part}
Theorem \ GOTO \subseteq TM \text{ and } GOTO^{\text{part}} \subseteq TM^{\text{part}}
Theorem. \(\text{GOTO} \subseteq \text{TM} \) and \(\text{GOTO}_{\text{part}} \subseteq \text{TM}_{\text{part}} \)

Proof (idea)

It is sufficient to prove that for every GOTO program

\[P = j_1 : l_1; j_2 : l_2; \ldots; j_k : l_k \]

we can construct an equivalent Turing machine.
Proof (continued)

Let r be the number of registers used in P.

We construct a Turing machine M with r half tapes over the alphabet $\Sigma = \{\#, |\}$.

- Tape i contains as many $|$’s as the value of x_i is.
- There is a state s_n of M for every instruction $j_n : I_n$.
- When M is in state s_n, it does what corresponds to instruction I_n:
 - Increment or decrement the register
 - Evaluate jump condition
 - Change its state to the corresponding next state.
GOTO \subseteq TM

Proof (continued)

Let r be the number of registers used in P.

We construct a Turing machine M with r half tapes over the alphabet $\Sigma = \{\#, |\}$.

- Tape i contains as many $|$'s as the value of x_i is.
- There is a state s_n of M for every instruction $j_n : l_n$.
- When M is in state s_n, it does what corresponds to instruction l_n:
 - Increment or decrement the register
 - Evaluate jump condition
 - Change its state to the corresponding next state.

It is clear that we can construct a TM which does everything above.
Proof (continued)

- Tape \(i \) contains as many \(|'s\) as the value of \(x_i \) is.
- There is a state \(s_n \) of \(M \) for every program \(P_n = j_n : I_n \).
- When \(M \) is in state \(s_n \), it does what corresponds to instruction \(I_n \):
 - Increment or decrement the register
 - Evaluate jump condition
 - Change its state to the corresponding next state.

<table>
<thead>
<tr>
<th>(I_n)</th>
<th>(M_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_i := x_i + 1)</td>
<td>(></td>
</tr>
</tbody>
</table>
| \(x_i := x_i - 1 \) | \(> L^{(i)} \#^{(i)} R^{(i)} \)
 \(\downarrow |^{(i)} \)
 \(\#^{(i)} \) |
Proof (continued)

• Tape i contains as many $|$’s as the value of x_i is.

• There is a state s_n of M for every program $P_n = j_n : I_n$.

• When M is in state s_n, it does what corresponds to instruction I_n:
 – Increment or decrement the register
 – Evaluate jump condition
 – Change its state to the corresponding next state.

<table>
<thead>
<tr>
<th>I_n</th>
<th>M_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_i := x_i + 1$</td>
<td>$></td>
</tr>
</tbody>
</table>
| $x_i := x_i - 1$ | $> L^{(i)} \#^{(i)} \rightarrow R^{(i)}$
| | $\downarrow |^{(i)}$
| | $\downarrow \#^{(i)}$ |

<table>
<thead>
<tr>
<th>P_n</th>
<th>M_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{n_1}; P_{n_2}$</td>
<td>$> M_{n_1} M_{n_2}$</td>
</tr>
</tbody>
</table>
| $j_n :$ if $x_i = 0$ goto j_k | $> L^{(i)} \#^{(i)} R^{(i)} \rightarrow M_k$
| | $\downarrow |^{(i)}$ |
| | $R^{(i)} \rightarrow M_{n+1}$ |
Proof (continued)

In "Theoretische Informatik I" it was proved:

For every TM with several tapes there exists an equivalent standard TM with only one tape.
Proof (continued)

In “Theoretische Informatik I” it was proved:

For every TM with several tapes there exists an equivalent standard TM with only one tape.

Therefore there exists a standard TM which simulates program P
Proof (continued)

In “Theoretische Informatik I” it was proved:

For every TM with several tapes there exists an equivalent standard TM with only one tape.

Therefore there exists a standard TM which simulates program P

Remark: We will prove later that $TM \subseteq GOTO$ and therefore $TM = GOTO = WHILE$.
In what follows we consider only LOOP programs which have only one input.
In what follows we consider only LOOP programs which have only one input.

If there exists a total TM-computable function \(f : \mathbb{N} \to \mathbb{N} \) which is not LOOP computable then we showed that \(\text{LOOP} \neq \text{TM} \).
LOOP \neq TM

In what follows we consider only LOOP programs which have only one input.

If there exists a total TM-computable function \(f : \mathbb{N} \rightarrow \mathbb{N} \) which is not LOOP computable then we showed that LOOP \(\neq \) TM.

Idea of the proof:

For every unary LOOP-computable function \(f : \mathbb{N} \rightarrow \mathbb{N} \) there exists a LOOP program \(P_f \) which computes it.

We show that:

- The set of all unary LOOP programs is recursively enumerable.
- There exists a Turing machine \(M_{LOOP} \) such that if \(P_1, P_2, P_3, \ldots \) is an enumeration of all (unary) LOOP programs then if \(P_i \) computes from input \(m \) output \(o \) then \(M_{LOOP} \) computes from input \((i, m) \) the output \(o \).
- We construct a TM-computable function which is not LOOP computable using a “diagonalisation” argument.
Lemma. The set of all LOOP programs is recursively enumerable.
Lemma. The set of all LOOP programs is recursively enumerable.

Proof (Idea) Regard any LOOP program as a word over the alphabet:

\[\Sigma_{\text{LOOP}} = \{; , x, :=, +, −, 1, \text{loop, do, end} \} \]

\(x_i \) is encoded as \(x^i \).

We can easily construct a grammar which generates all LOOP programs.

Proposition (TI 1): The recursively enumerable languages are exactly the languages generated by arbitrary grammars (i.e. languages of type 0).

Remark: The same holds also for WHILE programs, GOTO programs and Turing machines
Lemma.
There exists a Turing machine M_{LOOP} which simulates all LOOP programs.

More precisely:
Let P_1, P_2, P_3, \ldots be an enumeration of all LOOP programs.
If P_i computes from input m output o then M_{LOOP} computes from input (i, m) the output o.

Lemma.
There exists a Turing machine M_{LOOP} which simulates all LOOP programs.

More precisely:
Let P_1, P_2, P_3, \ldots be an enumeration of all LOOP programs.
If P_i computes from input m output o then M_{LOOP} computes from input (i, m) the output o.

Proof: similar to the proof that there exists a universal TM, which simulates all Turing machines.
Lemma.
There exists a Turing machine M_{LOOP} which simulates all LOOP programs.

More precisely:
Let P_1, P_2, P_3, \ldots be an enumeration of all LOOP programs.
If P_i computes from input m output o then M_{LOOP} computes from input (i, m) the output o.

Proof: similar to the proof that there exists an universal TM, which simulates all Turing machines.

Remark: The same holds also for WHILE programs, GOTO programs and Turing machines.
Theorem: LOOP $\not= \text{TM}$

Proof: Let $\Psi : \mathbb{N} \to \mathbb{N}$ be defined by:

$$\Psi(i) = P_i(i) + 1$$

Output of the i-th LOOP program P_i on input i to which 1 is added.

Ψ is clearly total. We will show that the following hold:

Claim 1: $\Psi \in \text{TM}$

Claim 2: $\Psi \notin \text{LOOP}$
Claim 1: $\Psi \in \text{TM}$

Proof: We have shown that:

- the set of all LOOP programs is r.e., i.e. there is a Turing machine M_0 which enumerates P_1, \ldots, P_n, \ldots (as Gödel numbers)
- there exists a Turing machine M_{LOOP} which simulates all LOOP programs

In order to construct a Turing machine which computes Ψ we proceed as follows:

- We use M_0 to compute from i the LOOP program P_i
- We use M_{LOOP} to compute $P_i(i)$
- We add 1 to the result.
Claim 2: $\Psi \not\in$ LOOP

Proof: We assume, in order to derive a contradiction, that $\Psi \in LOOP$, i.e. there exists a LOOP program P_{i_0} which computes Ψ.

Then:

- The output of P_{i_0} on input i_0 is $P_{i_0}(i_0)$.
- $\Psi(i_0) = P_{i_0}(i_0) + 1 \neq P_{i_0}(i_0)$

Contradiction!
Claim 2: $\Psi \not\in \text{LOOP}$

Proof: We assume, in order to derive a contradiction, that $\Psi \in \text{LOOP}$, i.e. there exists a LOOP program P_{i_0} which computes Ψ.

Then:

- The output of P_{i_0} on input i_0 is $P_{i_0}(i_0)$.
- $\Psi(i_0) = P_{i_0}(i_0) + 1 \neq P_{i_0}(i_0)$

Contradiction!

Remark: This does not hold for WHILE programs, GOTO programs and Turing machines.
Claim 2: $\Psi \not\in \text{LOOP}$

Proof: We assume, in order to derive a contradiction, that $\Psi \in \text{LOOP}$, i.e. there exists a LOOP program P_{i_0} which computes Ψ.

Then:

- The output of P_{i_0} on input i_0 is $P_{i_0}(i_0)$.
- $\Psi(i_0) = P_{i_0}(i_0) + 1 \neq P_{i_0}(i_0)$

Contradiction!

Remark: This does not hold for WHILE programs, GOTO programs and Turing machines.

Why?
Claim 2: $\Psi \not\in \text{LOOP}$

Proof: We assume, in order to derive a contradiction, that $\Psi \in \text{LOOP}$, i.e. there exists a LOOP program P_{i_0} which computes Ψ.

Then:

- The output of P_{i_0} on input i_0 is $P_{i_0}(i_0)$.
- $\Psi(i_0) = P_{i_0}(i_0) + 1 \neq P_{i_0}(i_0)$

Contradiction!

Remark: This does not hold for WHILE programs, GOTO programs and Turing machines.

The proof relies on the fact that Ψ is total (otherwise $P_{i_0}(i_0) + 1$ could be undefined).
Summary

We showed that:

- $\text{LOOP} \subseteq \text{WHILE} = \text{GOTO} \subseteq \text{TM}$
- $\text{WHILE} = \text{GOTO} \subset \text{WHILE}^\text{part} = \text{GOTO}^\text{part} \subseteq \text{TM}^\text{part}$
- $\text{LOOP} \neq \text{TM}$
Summary

We showed that:

- \(\text{LOOP} \subseteq \text{WHILE} = \text{GOTO} \subseteq \text{TM} \)
- \(\text{WHILE} = \text{GOTO} \nsubseteq \text{WHILE}^\text{part} = \text{GOTO}^\text{part} \subseteq \text{TM}^\text{part} \)
- \(\text{LOOP} \neq \text{TM} \)

Still to show:

- \(\text{TM} \subseteq \text{WHILE} \)
- \(\text{TM}^\text{part} \subseteq \text{WHILE}^\text{part} \)
Summary

We showed that:

- $\text{LOOP} \subset \text{WHILE} = \text{GOTO} \subset \text{TM}$
- $\text{WHILE} = \text{GOTO} \subset \text{WHILE}^{\text{part}} = \text{GOTO}^{\text{part}} \subset \text{TM}^{\text{part}}$
- $\text{LOOP} \neq \text{TM}$

Still to show:

- $\text{TM} \subset \text{WHILE}$
- $\text{TM}^{\text{part}} \subset \text{WHILE}^{\text{part}}$

For proving this, another model of computation will be used: recursive functions