MapReduce-style data processing

Software Languages Team
University of Koblenz-Landau
Ralf Lämmel and Andrei Varanovich
Related meanings of MapReduce

- Functional programming with ‘map’ & ‘reduce’
- An algorithmic skeleton for data parallelism
- Google’s related programming model
- Related programming techniques for data technologies
Functional programming with ‘map’ & ‘reduce’

We use Haskell here for illustration; ‘reduce’ is called ‘foldr’ in Haskell.
The higher-order function `map`

`map f l` applies the function `f` to each element of the list `l` and produces the list of results.

```
> :t map
map :: (a -> b) -> [a] -> [b]
> map ((+) 1) [1,2,3]
[2,3,4]
> map ((*) 2) [1,2,3]
[2,4,6]
> map even [1,2,3]
[False,True,False]
```

The type of `map`

Increment the numbers.

Double the numbers.

Test numbers to be even.
The higher-order function \textit{foldr}

\texttt{foldr f x l} combines all elements of the list \texttt{l} with the binary operation \texttt{f} starting from \texttt{x}.

\begin{verbatim}
> :t foldr
foldr :: (a -> b -> b) -> b -> [a] -> b
> foldr (+) 0 [1,2,3]
6
> foldr (&&) True [True,True,False]
False
\end{verbatim}
Typical forms of reduction

\[
\text{sum} = \text{foldr} \ (+) \ 0
\]
\[
\text{product} = \text{foldr} \ (\ast) \ 1
\]
\[
\text{and} = \text{foldr} \ (\&\&) \ \text{True}
\]
\[
\text{or} = \text{foldr} \ (\|) \ \text{False}
\]
Another way to think of *foldr*

```haskell
> let l1 = [1,2,3,4]
> sum l1
10

> product l1
24

sum, product :: Num a => [a] -> a
sum = foldr (+) 0
product = foldr (*) 1

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f k [] = k
foldr f k (x:xs) = f x (foldr f k xs)
```

How to replace `(:)`

How to replace `[]`
Datatypes for companies

data Company
 = Company Name [Department]

data Department
 = Department Name Manager [Department] [Employee]

data Employee = Employee Name Address Salary

type Manager = Employee

type Name = String

type Address = String

type Salary = Float

[101implementation:haskell]
Company structure in Haskell

```haskell
company =
  Company
    "meganalysis"
    [ Department "Research"
      (Employee "Craig" "Redmond" 123456)
      []
      [ Employee "Erik" "Utrecht" 12345,
        Employee "Ralf" "Koblenz" 1234
      ],
    Department "Development"
      (Employee "Ray" "Redmond" 234567)
      [ Department "Dev1"
        (Employee "Klaus" "Boston" 23456)
        [ Department "Dev1.1"
          (Employee "Karl" "Riga" 2345)
          []
          [ Employee "Joe" "Wifi City" 2344 ]
        ]
      ]
      []
    ]
```

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)
Cutting salaries in Haskell

\[
\text{cut} :: \text{Company} \rightarrow \text{Company} \\
\text{cut} \ (\text{Company} \ n \ ds) = \text{Company} \ n \ \left(\text{map} \ \text{dep} \ ds \right) \\
\text{where} \\
\text{dep} :: \text{Department} \rightarrow \text{Department} \\
\text{dep} \ (\text{Department} \ n \ m \ ds \ es) = \text{Department} \ n \ (\text{emp} \ m) \ \left(\text{map} \ \text{dep} \ ds \right) \ \left(\text{map} \ \text{emp} \ es \right) \\
\text{where} \\
\text{emp} :: \text{Employee} \rightarrow \text{Employee} \\
\text{emp} \ (\text{Employee} \ n \ a \ s) = \text{Employee} \ n \ a \ (s/2)
\]

[101 implementation: haskell]
Totaling salaries in Haskell

```
total :: Company -> Float

total (Company n ds) = sum (map dep ds)

where

  dep :: Department -> Float

  dep (Department _ m ds es) =
      sum (emp m : map dep ds ++ map emp es)

where

  emp :: Employee -> Float

  emp (Employee _ _ s) = s
```

[101implementation:haskell]
The basic idea of data parallelism
Think of a huge company
(Millions of employees)

• Too big to store on one disk!
• We assume a \textit{flat} representation.
• Compute total in \textit{parallel} on many machines.
Datatypes for flat companies

```haskell
type Company = Name  -- Name of company

type Department = (  
    Name,           -- Name of department
    Maybe Name,     -- Name of ancestor department
    Name            -- Name of associated company
)

type Employee = (  
    Name,           -- Name of employee
    Name,           -- Name of associated department
    Name,           -- Name of associated company
    Address,        -- Address of employee
    Salary,         -- Salary of employee
    Bool            -- Manager?
)

type Name = String

type Address = String

type Salary = Float

[101implementation:haskellFlat]
```
Flat companies

companies :: [Company]
companies = ["meganalysis"]

departments :: [Department]
departments = [
 ("Research", Nothing, "meganalysis"),
 ("Development", Nothing, "meganalysis"),
 ("Dev1", Just "Development", "meganalysis"),
 ("Dev1.1", Just "Dev1", "meganalysis")
]

employees :: [Employee]
employees = [
 ("Craig", "Research", "meganalysis", "Redmond", 123456, True),
 ("Erik", "Research", "meganalysis", "Utrecht", 12345, False),
 ("Ralf", "Research", "meganalysis", "Koblenz", 1234, False),
 ("Ray", "Development", "meganalysis", "Redmond", 234567, True),
 ("Klaus", "Dev1", "meganalysis", "Boston", 23456, True),
 ("Karl", "Dev1.1", "meganalysis", "Riga", 2345, True),
 ("Joe", "Dev1.1", "meganalysis", "Wifi City", 2344, False)
]
Total flat companies

-- Total all salaries (perhaps even of several companies)

`total :: [Employee] -> Float`

`total = sum . map (\(_e, _d, _c, _a, s, _m\) -> s)`
Clusters of machines for parallel map-reduce

http://labs.google.com/papers/sawzall.html

Freitag, 14. September 2012
Total flat companies on many machines

```
total :: ([[Employee]] -> Float

total

= sum
  . map (sum . map (\(_e, _d, _c, _a, s, _m\) -> s))
```

[101implementation:haskellFlat]
Total flat companies

```
-- Total all salaries grouped by company times department

totalPerDepartment :: [Employee] -> Map (Name, Name) Float

totalPerDepartment = foldr insert empty

where

insert (_, d, c, _, s, _) = insertWith (+) (c, d) s

fromList [(("meganalysis","Dev1"),23456.0),(("meganalysis","Dev1.1"),4689.0),(("meganalysis","Development"),234567.0),(("meganalysis","Research"),137035.0)]
```

Output

```
[101implementation:haskellFlat]
```
Google's MapReduce Programming Model

[http://labs.google.com/papers/mapreduce.html]

© 2012, 101 companies & Software Languages Team (University of Koblenz-Landau)
Large Scale Data Processing

- Process lots of data to produce other data.
- Use hundreds or thousands of CPUs.
- Automatic parallelization and distribution.
The MapReduce programming model

Input & Output: sets of key/value pairs

Programmer specifies two functions:

map \((\text{in_key}, \text{in_value}) \rightarrow \text{list(out_key, intermediate_value)})\)
Processes input key/value pair.
Produces set of intermediate pairs.

reduce \((\text{out_key}, \text{list(intermediate_value)}) \rightarrow \text{list(out_value)})\)
Combines all intermediate values for a particular key.
Produces a set of merged output values (usually just one).
The domains for intermediate and output values coincide.
An example: counting the number of occurrences of each word in a collection of documents

map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, "1");

reduce(String key, Iterator values):
 // key: a word
 // values: a list of counts
 int result = 0;
 for each v in values:
 result += ParseInt(v);
 Emit(AsString(result));
Distribution:
many map and reduce tasks

[http://labs.google.com/papers/mapreduce.html]
Control of job execution

- Automatic division of job into tasks
- Automatic placement of computation near data
- Automatic load balancing
- Recovery from failures & stragglers

User focuses on application, not on complexities of distributed computation.
Fault tolerance

- Cheap nodes fail, especially if you have many
 - Mean time between failures for 1 node = 3 years
 - Mean time between failures for 1000 nodes = 1 day

- Solution: Build fault-tolerance into system
 - If a node crashes: Re-launch its current tasks on other nodes and re-run any maps the node previously ran.
 - If a task crashes: Retry on another node. (OK for a map because it has no dependencies. OK for reduce because map outputs are on disk.)
Network as a bottleneck

- Limited bandwidth (especially for commodity network)
- Solution: Push computation to the data
‘Stragglers’

If a task is going slowly (straggler):
Launch second copy of task on another node (“speculative execution”). Take the output of whichever copy finishes first, and kill the other.

Surprisingly important in large clusters:
Stragglers occur frequently due to failing hardware, software bugs, misconfiguration, etc. Single straggler may noticeably slow down a job.
Apache Hadoop is an open-source software framework that supports data-intensive distributed applications [...]. It enables applications to work with thousands of computational independent computers and petabytes of data. Hadoop was derived from Google's MapReduce and Google File System (GFS) papers. The entire Apache Hadoop “platform” is now commonly considered to consist of the Hadoop kernel, MapReduce and HDFS, as well as a number of related projects [...]. Hadoop is a top-level Apache project being built and used by a global community of contributors, [...] written in the Java programming language.

Hadoop components

- Distributed file system (HDFS)
 - Single namespace for entire cluster
 - Replicates data 3x for fault-tolerance
- MapReduce framework
 - Executes user jobs specified as “map” and “reduce” functions
 - Manages work distribution & fault-tolerance
HDFS

- Files split into 128MB blocks
- Blocks replicated across several datanodes (usually 3)
- Single namenode stores metadata (file names, block locations, etc)
- Optimized for large files, sequential reads
- Files are append-only
A Hadoop Cluster

40 nodes/rack, 1000-4000 nodes in cluster
1 Gbps bandwidth within rack, 8 Gbps out of rack
Node specs (Yahoo terasort):
 8 x 2GHz cores, 8 GB RAM, 4 disks (= 4 TB)
Demo

A 101 companies implementation using Hadoop
public static class TotalMapper extends Mapper<Text, Employee, Text, DoubleWritable> {

 private static String name;

 protected void setup(Context context) throws IOException, InterruptedException {
 name = context.getConfiguration().get(Total.QUERIED_NAME);
 }

 protected void map(Text key, Employee value, Context context) throws IOException, InterruptedException {
 if (value.getCompany().toString().equals(name)) {
 context.write(value.getCompany(), value.getSalary());
 }
 }
}
public static class TotalReducer extends
Reducer<Text, DoubleWritable, Text, DoubleWritable> {

protected void reduce(Text key, Iterable<DoubleWritable> values,
 Context context) throws IOException, InterruptedException {
 double total = 0;
 for (DoubleWritable value : values) {
 total += value.get();
 }
 context.write(key, new DoubleWritable(total));
}
}
Summary

You learned about ...

- functional programming with map & reduce,
- related opportunities of parallelization,
- Google’s MapReduce programming model,
- and the Hadoop implementation.
Resources

• Google's MapReduce Programming Model -- Revisited
 http://userpages.uni-koblenz.de/~laemmel/MapReduce/